Digitales Brandenburg

hosted by Universitätsbibliothek Potsdam

Geologische Spezialkarte von Preussen und den Thüringischen Staaten

Sect. Friedrichsfelde - geologische Karte

Behrendt, G.

Berlin, 1882

III. Analytisches.

urn:nbn:de:kobv:517-vlib-2296

III. Analytisches.

Im Folgenden sind Analysen derjenigen Profile und Gebirgsarten gegeben, welche als charakteristisch für die Bodenverhältnisse innerhalb des Blattes Friedrichsfelde bezeichnet werden konnten. Dieselben entstammen theils diesem Blatte selbst, theils sind sie benachbarten Sectionen entnommen. Letztere sind bereits veröffentlicht in den

Abhandlungen zur geolog. Specialkarte von Preussen und den Thüring. Staaten, Bd. III, Heft 2. Berlin 1881.

»Untersuchungen des Bodens der Umgegend von Berlin, von Dr. Ernst Laufer und Dr. Felix Wahnschaffe.«

Ebenda ist auch nähere Auskunft gegeben über die bei der Untersuchung angewandten Methoden.

Vorausgeschickt ist hier aus dieser Abhandlung eine Tabelle des Gehalts an Thonerde, Eisenoxyd, Kali und Phosphorsäure in den Feinsten Theilen einer Anzahl lehmiger Bildungen, welche einen Anhalt zur Beurtheilung sämmtlicher lehmiger Bildungen aus der Umgegend von Berlin, hinsichtlich ihrer chemischen Fundamentalzusammensetzung giebt.

Maxima, Minima und Durchschnittszahlen des Gehaltes an:

Thonerde, Eisenoxyd, Kali und Phosphorsäure in den Feinsten Theilen*) der lehmigen Bildungen der Umgegend Berlins.

(Berücksichtigt sind nur die Aufschliessungen mit Flusssäure und kohlensaurem Natron.)

(Deruckstellingt sind	idi dio zadiooi	miccoun Bon		and a second	The second second	STREET, STREET	MARKET BELLEVILLE
Geognostische Bezeichnung	Bemerkun- gen	In Procenten ausgedrückt:	Thon- erde	Entspr. wasser- haltigem Thon	Eisen- oxyd	Kali	Phos- phor- säure
Die Feinsten Theile	1. Nach den analytischen Ergebnissen	Maximum Minimum Durchschnitt	17,24 9,84 13,11	_ 32,99	7,03 4,39 5,32	111	
der Diluvialthon- mergel	2. Berechnet nach Abzug des kohlen- sauren Kalkes	Maximum Minimum Durchschnitt	19,13 11,37 14,55	36,62	7,47 4,85 5,92		==
Die Feinsten Theile der Diluvialmergel- sande	the medicary	Maximum Minimum Durchschnitt	18,47 14,10 15,65	39,39	9,27 7,18 7,69	111	===
Die Feinsten Theile der Unteren Dilu- vialmergel		Maximum Minimum Durchschnitt	16,64 9,41 12,52	_ 31,51	8,39 4,08 5,87	4,35 2,94 3,64	
Die Feinsten Theile der Oberen Dilu-	1. Nach den analytischen Ergebnissen	Maximum Minimum Durchschnitt	14,47 11,81 13,56	- 34,13	6,92 5,23 6,23	4,10 2,62 3,55	0,45 0,20 0,29
vialmergel	2. Nach Ab- zug des koh- lensauren Kalkes	Maximum Minimum Durchschnitt	19,09 14,04 16,43	_ 41,36	8,37 6,65 7,52	5,00 3,11 4,45	0,60 0,24 0,37
Die Feinsten Theile der Lehme des Unteren Diluvial- mergels		Maximum Minimum Durchschnitt	19,83 15,99 17,88	45,00	10,44 7,44 8,79	=	=
Die Feinsten Theile der Lehme des Oberen Diluvial- mergels		Maximum Minimum Durchschnitt	20,77 16,08 17,99	_ 45,28	11,37 7,18 8,90	4,97 3,44 4,26	0,51 0,18 0,38
Die Feinsten Theile der lehmigen Sande	1. Acker- krume (schwach hu- mos)	Maximum Minimum Durchschnitt	17,84 11,87 13,48	33,93	6,14 3,85 5,28	4,36 2,95 3,77	0,60 0,38 0,46
des Oberen Diluvial- mergels	2. Unterhalb der Acker- krume	Maximum Minimum Durchschnitt	18,03 11,46 14,66	_	9,04 3,66 5,95	4,07 3,10 3,76	0,65 0,18 0,42

^{*)} Körner unter 0,01^{mm} Durchmesser.

A. Aus Blatt Friedrichsfelde.

Kalkbestimmungen

mit dem Scheibler'schen Apparate.

K. Keilhack.

I.

Diluvialthonmergel.

Grube in Friedrichsfelde.

	nach der ersten Bestimmung	13,6 pCt.
Kohlensaurer Kalk	» » zweiten »	13,5 »
	im Durchschnitt	

Sandboden de.II beren Bildvams

Unterer Diluvialgrand.

Grube in Friedrichsfelde.

Kohlensaurer Kalk . . . 2,18 pCt.

III.

Unterer Diluvialsand.

Grube in Friedrichsfelde.

Kohlensaurer Kalk . . . 0,59 pCt.

IV.

Oberer Diluvialmergel.

V.

Oberer Diluvialmergel.

Grube in Friedrichsfelde, 3 Decim. unter Sandigem Lehm.

Kohlensaurer Kalk | nach der ersten Bestimmung 7,08 pCt.

* * zweiten * 7,40 *
im Durchschnitt 7,24 pCt.

Höhenboden.

Profil 81.

Sandboden des Oberen Diluviums.

ds

Oberer Sand (Geschiebesand) südlich von Hellersdorf. Section Friedrichsfelde.

K. KEILHACK.

Mechanische Analyse.

Mäch- tigkeit Decimet.	Gebirgsart	Agronom. Bezeichn.	Grand über 2 ^{mm}	2- 1 ^{mm}	1-	S a n 0,5- 0,2 ^{mm}	0,2-	0,1- 0,05 ^{mm}	Staub 0,05- 0,01 ^{mm}	Feinste Theile unter 0,01 ^{mm}	Summa
2.5	1	LS			86,0*)				5,2	5,3	99,4
2,5	Oberer	(Acker- krume)		2,4	7,0	25,6	38,0	12,4			
0.5	Diluvial-	S	2,1	90,6				2,1	5,4	100,2	
3,5	sand	(Ur- krume)		2,6	8,1	22,7	52,9	4,3			
	8	S	0,7	D. 1754		94,3			2,7	2,3	100,0
6+	LOUNE	(Untergrund)	della	1,0	5,5	14,6	65,9	7,3			

^{*)} Wurzelfasern etc. = 0,6 pCt.

Höhenboden.

Profil 82.

Lehmiger Boden des Oberen Diluviums.

ð m

Oberer Diluvialmergel.

Grube in Friedrichsfelde. Section Friedrichsfelde.

K. KEILHACK.

Mechanische Analyse.

Mäch- tigkeit Decimet.	Gebirgs- art	Agronom. Bezeichn.	Grand über 2 ^{mm}	2- 1 ^{mm}	1-	S a n 0,5- 0,2 ^{mm}	0,2-	0,1 0,05 ^{mm}	Staub 0,05- 0,01 ^{mm}	Feinste Theile unter 0,01 ^{mm}	Summa
2,5	\	SLS (Acker-	1,7	6,68		75,5	hd	81	10,2	12,4	99,8
2,0		krume)	Part	2,8	7,3	14,1	39,2	12,2			
0.5		SSL (Ur-	1,2			76,1			8,9	13,6	99,8
3,5	01	krume)		1,6	5,9	14,6	42,3	11,7	R - J	emolini d	
	Oberer Diluvial-	SL	1,4	118	66,0				16,1	16,2	99,7
6	mergel	(Untergrund)		2,1	6,5	10,7	31,9	14,8		is I	
1	ðт	SM (Tieferer	2,8		65,0			15,9	16,1	99,8	
. (Unter- grund)	100	2,9	6,5	10,6	27,6	17,4	Ta l		
10		SM desgl.	3,6	1.95		56,2				40,2	100,0
			200	3,0	6,8	11,6	24,3	10,5			14

Niederungsboden.

Profil 83.

Sandboden des Alt-Alluviums.

as 8m

Sand hochgelegener Becken.

An der Strasse von Weissensee nach Falkenberg, 100 m vor dem Malchow-Hohen-Schönhausener Wege.

Section Friedrichsfelde.

K. KEILHACK.

Mechanische Analyse.

Mäch- tigkeit Decimet.	Gebirgs- art	Agronom. Bezeichn.	Grand über 2 ^{mm}	2- 1 ^{mm}	1-	S a n	0.2-	0,1- 0,05 ^{mm}	Staub 0,05- 0,01 ^{mm}	Feinste Theile unter 0,01 ^{mm}	Summa
2,5	401 - 6	SHS (Acker-krume)	1,4	3,6	7,4	83,4	11,6	14,9	8,0	7,2	100,0
3,5	Sand hoch-	SHS	1,9			87,7			6,9	3,3	99,8
744	Becken	(Ur- krume)		1,9	4,5	8,6	56,4	16,3			005
6	01	S (Untergrund)		0,03	0,1	95,3	58,6	31,8	2,0	2,2	99,5
4+	Oberer Diluvial- mergel &m	L (Tieferer Unter- grund)	2,80	400	0,4	38,5	11,4	24,1	22,2	38,5	99,2

Niederungsboden.

Profil 84.

Sandboden des Alt-Alluviums.

Sand hochgelegener Becken. Unmittelbar östlich von Hohen-Schönhausen. Section Friedrichsfelde.

K. KEILHACK.

Mechanische Analyse.

Mäch- tigkeit	Gebirgs- art	Agronom. Bezeichn.	Grand über 2 ^{mm}	2- 1 ^{mm}	1-	S a n 0,5- 0,2 ^{mm}	0.2-	0,1- 0,05 ^{mm}	Staub 0,05- 0,01 ^{mm}	Feinste Theile unter 0,01 ^{mm}	Summa
		SHS	-			92,4*)		3,6	4,1	100,1
2,5	Sand	(Acker- krume)		0,8	4,9	20,0	56,2	10,0	1. 18		
1000	hoch-	SHS	0,5	mer	nolinse	91,0*) byds		4,1	4,3	99,9
3,5	gelegener Becken	(Ur- krume)	Bay	1,1	5,9	16,4	53,7	13,4			MAK
-	as	S	-			97,8			0,8	0,6	99,2
3+	innien	(Untergrund)	3	0,4	2,9	37,8	38,8	17,9	Rabnid	De la	

^{*)} Wurzelfasern etc. = 0,5 pCt.

Gebirgsarten.

Diluvialsand (Spathsand).

Grube in Friedrichsfelde.

K. KEILHACK.

Mäch- tigkeit Decimet.	art	Agronom. Bezeichn.	Grand über 2 ^{mm}	S a n d 2- 1- 0,5- 0,2- 0,1- 0,05mm 0,05mm	Staub 0,05- 0,01 ^{mm}	Feinste Theile unter 0,01 ^{mm}	Summa
	Unterer Diluvial- sand	S	OFF	99,3	0,4	0,6	100,3
20	Unterer Diluvial-	GS	4,0	93,6	1,2	0,9	99,7
	grand dg	0.5		19,2 48,4 23,9 1,4 0,7	SHEW .	rodT	

Diluvialthonmergel.

Grube in Friedrichsfelde.

K. KEILHACK.

Mechanische Analyse.

Mäch- tigkeit Decimet.	Gebirgs- art	Agronom. Bezeichn.	40.0		Staub 0,05- 0,01 ^{mm}	Feinste Theile unter 0,01 ^{mm}	Summa
40+	Unterer Diluvial- thon-	T	-	0,5	16,1	83,4	100,0
40 —	mergel dh						

B. Aus Nachbar-Sectionen.

I. Ackerkrume des Oberen Diluvialmergels. Rixdorf. (Section Tempelhof.)

ERNST SCHULTZ.

Chemische Analyse.

Bestandtheile	Feinste in Proces Schlemm- products		in Proce Sta Schlemm- products	ub	Gesammt boden
Kieselsäure	57,71	6,68	75,47	6,58	86,67
Thonerde	12,57 *)	1,45 *)	6,54	0,57	4,28
Eisenoxyd	5,14	0,59	2,22	0,19	1,29
Kalkerde	2,45	0,28	2,24	0,19	1,21
Magnesia	2,24	0,26	0,51	0,04	0,31
Kali	2,95	0,34			1,53
Natron	1,37	0,16	Anedo	r Differenz	0,92
Kohlensäure	2,13	0,25		rechnet	0,36
Phosphorsäure	_	_	13,02	1,14	0,13
Humus	6,35	0,73			1,13
Glühverlust (excl. CO ₂ und Humus)	6,05	0,70)		2,18
Summa	98,96	11,44	100,0	8,71	100,01
*) entspr. wasserhaltigem Thon)	31,64	3,15	-	_	-

II. Sand alter Seebecken.

Süd-Staffelde. (Section Linum.)

FELIX WAHNSCHAFFE.

Chemische Analyse der Feinsten Theile des schwach humosen Sandes.

Aufschliessung mit Flusssäure.

Bestandtheile	In Proce	enten des Gesammtbodens
Thonerde	13,03 *)	0,287 *)
Eisenoxyd	4,35	0,096
Kali	2,07	0,045
Kalkerde	3,37	0,074
Kohlensäure	fehlt	_
Phosphorsäure	0,69	0,015
Glühverlust	29,31	0,645
Kieselsäure und nicht Bestimmtes	47,18	1,038
Summa	100,00	2,200
*) entspräche wasserhaltigem Thon .	32,80	0,722

Entspricht in der mechanischen Analyse dem Sande des Hohenschönhauser Beckens.