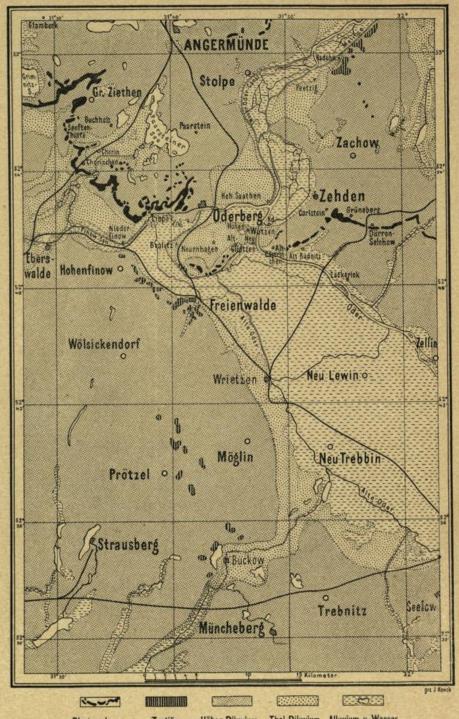
Digitales Brandenburg

hosted by Universitätsbibliothek Potsdam

Geologische Spezialkarte von Preussen und den Thüringischen Staaten


Neu-Lewin

Gagel, C.

Berlin, 1908

Erläuterungen

urn:nbn:de:kobv:517-vlib-3211

Höhen-Diluvium Thal-Diluvium Alluvium u. Wasser Blockpackung Tertiär

Blatt Neu-Lewin

Gradabteilung 45, No. 18

Geognostisch und agronomisch bearbeitet durch

C. Gagel

Mit einer Abbildung und einer Übersichtskarte

Bekanntmachung.

Jeder Erläuterung liegt eine "Kurze Einführung in das Verständnis der geologisch-agronomischen Karten", sowie ein Verzeichnis der bisherigen Veröffentlichungen der Königlich Preußischen Geologischen Landesanstalt und Bergakademie bei. Beim Bezuge ganzer Kartenlieferungen wird nur je eine "Einführung" beigegeben. Sollten jedoch mehrere Abzüge gewünscht werden, so können diese unentgeltlich durch die Vertriebstelle der genannten Anstalt (Berlin N. 4, Invalidenstraße 44) bezogen werden.

Im Einverständnis mit dem Königlichen Landes-Ökonomie-Kollegium werden vom 1. April 1901 ab besondere gedruckte Bohrkarten zu unseren geologisch-agronomischen Karten nicht mehr herausgegeben. Es wird jedoch auf schriftlichen Antrag der Orts- oder Gutsvorstände, sowie anderer Bewerber eine handschriftlich oder photographisch hergestellte Abschrift der Bohrkarte für die betreffende Feldmark oder für den betreffenden Forstbezirk von der Königlichen Geologischen Landesanstalt unentgeltlich geliefert.

Mechanische Vergrößerungen der Bohrkarte, um sie leichter lesbar zu machen, werden gegen sehr mäßige Gebühren abgegeben, und zwar

a) handschriftliche Eintragung der Bohrergebnisse in eine vom Antragsteller gelieferte, mit ausreichender Orientierung versehene Gutsoder Gemeindekarte beliebigen Maßstabes:

bei Gütern etc. unter 100 ha Größe für 1 Mark,

" " " von 100 bis 1000 " " " 5 "

" " " über 1000 " " " 10 "

b) photographische Vergrößerungen der Bohrkarte auf 1:12500 mit Höhenlinien und unmittelbar eingeschriebenen Bohrergebnissen: bei Gütern . . . unter 100 ha Größe für 5 Mark,

" von 100 bis 1000 " " 10 " " 10 " " 20 " "

Sind die einzelnen Teile des betreffenden Gutes oder der Forst räumlich voneinander getrennt und erfordern sie deshalb besondere photographische Platten, so wird obiger Satz für jedes einzelne Stück berechnet.

I Oberflächenformen und geologischer Bau des weiteren Gebietes

Blatt Neu-Lewin, zwischen 31° 50′ und 32° östlicher Länge sowie 52° 42′ und 52° 48′ nördlicher Breite gelegen, stellt im wesentlichen einen Teil des Oderbruches dar, das ungefähr ½ des Blattes einnimmt, und nur in seiner nordöstlichen Ecke umfaßt das Blatt noch einen kleinen Abschnitt der das rechte Oderufer bildenden diluvialen Hochfläche.

Während das Oderbruch im wesentlichen zwischen 5 und 6 m über N.-N. liegt, tritt die diluviale Hochfläche mit einem Steilrande von etwa 20 m Höhe an die hier 4-5 m über N.-N. liegende Oder heran und erhebt sich landeinwärts bis zu 62,6 m. — Durchzogen wird das Blatt in der Nordostecke von der Oder, die vom östlichen Kartenrande bis etwas unterhalb von Güstebiese, das heißt soweit es der alte, natürliche Lauf ist, dicht am diluvialen Rande fließt, von da ab aber, wo sie in dem zur Zeit Friedrichs des Großen ausgestochenen Bette läuft, durch ein 1/2 bis 1 km breites Vorland davon geschieden ist. Gegenüber von Güstebiese zweigt sich von ihr die ehemalige "Alte Oder" ab, die zuerst in südlicher, dann ungefähr in westlicher Richtung quer durch das ganze Blatt zieht. Dieser alte Oderlauf ist seit dem Durchstich der neuen Oder fast ganz versandet und verwachsen und daher, da er zur Schiffahrtszwecken doch nicht mehr brauchbar war, im Jahre 1832 durch die Verbindung der linken Oderdeiche vollständig abgedämmt worden, und empfängt seine unbedeutenden Wassermengen jetzt nur noch aus dem Oderbruche. Die diluviale Hochfläche wird nur durch ein kleines, aber tief eingeschnittenes Tal eines unbedeutenden Baches, der Schlibbe, unterbrochen, die bei Alt-Lietzegöricke in die Niederung eintritt.

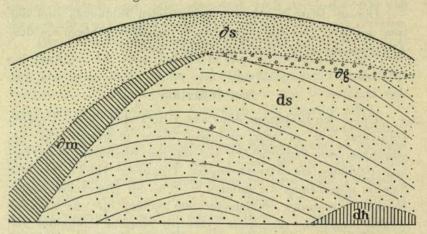
Das in der zweiten Hälfte des vorigen Jahrhunderts unter Friedrich dem Großen eingedeichte und so dem Ackerbau erschlossene Oderbruch liegt im Bereiche dieses Blattes fast vollständig zwischen 5 und 6 m über N.-N. Nur wenige Stellen liegen etwas tiefer, der tiefste Punkt südlich Neu Wustrow mit 3,8 m

und an nicht viel zahlreicheren Stellen treten kleine, in dieser fast vollständig horizontalen Landschaft aber doch schon recht bemerkbare und von den Bruchbewohnern in wunderlicher Übertreibung Berge genannte Erhöhungen hervor, deren höchste sich bis zu 8,2 m über N.-N. erhebt. Es sind dies alles alte Sandbänke, die sich zum Teil noch als solche aus der umgebenden Schlicklandschaft herausheben, zum Teil später mit einer dünnen Schlickdecke überzogen sind, dann aber doch noch durch den sehr viel weniger üppigen Pflanzenwuchs ihren unfruchtbaren Kern verraten.

Der Normalwasserspiegel der Oder liegt bei ihrem Eintritt auf das Blatt bei 5,3 m bei ihrem Austritt bei 4,3 m über N.-N. also nur sehr wenig unter der Oberfläche der eingedeichten Niederung, sodaß bei jedem Hochwassser der Oderspiegel sich mehr oder weniger über die Oberfläche des Bruches erhebt.

Da nun der die Oberfläche des Bruches bildende Schlickboden stellenweise nur eine sehr dünne Schicht über dem darunter liegenden Sande bildet und auch wegen der an vielen Stellen in ihm eingeschalteten Sandschichten durchaus nicht vollständig wasserundurchlässig ist, so ist die Folge dieser jetzt immer häufiger werdenden und in nassen Jahren für längere Zeit anhaltenden Hochwasserstände, daß durch den hydrostatischen Druck der Oder das Wasser unter den Deichen durchgedrückt wird und die in der Nähe der Deiche gelegenen Landstrecken mehr oder weniger unter Wasser setzt oder so durchtränkt, daß sie nicht beackert werden können oder die darauf stehenden Saaten verderben. Da nun das allgemeine Gefälle der Bruchoberfläche ein kaum merkliches ist, so verläuft dieses unter den Deichen durchgedrückte Wasser natürlich nur sehr langsam und ist lange, nachdem das eigentliche Hochwasser schon vorbei ist, noch bemerklich. Außerdem wird durch diesen hydrostatischen Druck der Oderhochwasser der allgemeine Grundwasserspiegel so heraufgerückt, daß sich jedes länger anhaltende Hochwasser viel weiter landeinwärts bemerklich macht als das eigentliche Druckwasser reicht, und bei sehr nassen Jahren soll dieses Hinaufrücken des Grundwasserspiegels bis über 21/2 km von der Oder sich fühlbar machen.

II Die geologischen Verhältnisse des Blattes


Die auf Blatt Neu-Lewin auftretenden Bildungen sind nur zum geringen Teil diluvialen Alters, meistens gehören sie dem Alluvium an; ältere Bildungen fehlen ganz.

Das Diluvium

Unter den Bildungen diluvialen Alters sind die des Unteren Diluviums nur in sehr geringem Maße vertreten. Sie beschränken sich hauptsächlich auf die am Steilrande des Oderund Schlibbeufers hervortretenden Unteren Sande (ds), die hier im allgemeinen die unteren 5—8 m des Uferrandes bilden. Es sind feinkörnige wohlgeschichtete Sande, die nur hin und wieder Bänkehen von etwas gröberem Material enthalten und sonst nichts weiter bemerkenswertes zeigen. In der Sandgrube des letzten Zäckericker Ausbaues nordwestlich von Alt-Lietzegöricke findet sich an ihrer Sohle ein kleines wenig mächtiges Tonmergellager aufgeschlossen, das sich auch noch auf kurze Entfernung weiter verfolgen läßt, und südöstlich davon am Weinberge von Alt-Lietzegöricke tritt unter ihnen in zwei sehr kleinen Kuppen der Untere Geschiebemergel (dm) hervor.

In etwas größerer Ausdehnung als die Glieder des unteren Diluviums tritt der Obere Geschiebemergel (om) auf. Er bildet fast längs des ganzen Oderufers ein nahezu zusammenhängendes Band von wechselnder, doch meistens nicht sehr bedeutender Mächtigkeit, das nur an wenigen Stellen durch die Erosion unterbrochen oder durch die darüber gelagerten Sandmassen so bedeckt ist, daß es oberflächlich nicht nachgewiesen werden kann.

Auf der ungefähr 250 m langen Strecke vom Nordrande des Blattes bis zu dem ersten kleinen Nebentälchen, das den Diluvialrand durchbricht, bildet er das hier nur ungefähr 5 m hohe Steilufer der Oder, verschwindet dann unter den Abschlämmmassen dieses Nebentälchens, taucht dann auf dessen anderer Seite im Grunde der dortigen Sandgrube als dünne, steil aufgerichtete Bank wieder auf, die sich ungefähr bis zur Mitte der Grube hinzieht, sich dort ungefähr 3 m über der Sohle ganz auskeilt und sich dann nur noch als dünne Kiesbank einige Meter weiter verfolgen läßt.

Sandgrube am Zäckericker Ausbau nordwestlich von Alt-Lietzegöricke

Auf der gegenüberliegenden Seite des zweiten Nebentälchens erscheint er dann wieder auf kurze Strecke, um sich sofort wieder zu einer Kiesschicht auszukeilen; endlich tritt er, durch Erosion von den darüberliegenden Sanden zum Teil befreit, als etwas breiteres Band wieder am Weinberge nordwestlich von Alt-Lietzegöricke auf, verschwindet aber auch hier bald wieder unter den das kleine Tal nordwestlich von Alt-Lietzegöricke ausfüllenden Sandmassen. In den Aufschlüssen in und am Dorfe Alt-Lietzegöricke ist er dann 3—5 m mächtig, wobei an zweien dieser Aufschlüsse die darunterliegenden Unteren Sande noch nicht erreicht sind. Am rechten Schlibbeufer ist er wegen Überrutschung durch die sehr mächtigen Oberen Sande garnicht nachweisbar, an dem linken Schlibbeufer und dem ganzen übrigen Oderufer bildet er eine 1—2 m mächtige Bank, die im allgemeinen ziemlich horizontal die Unteren Sande bedeckt

und nur an einer Stelle sich bis in die Sohle des Odertales hinabsenkt. Über der Hauptbank des Oberen Geschiebemergels findet sich als Einschaltung in dem Oberen Sande an zwei Stellen noch eine wenige Dezimeter mächtige zweite Geschiebemergelbank, die sich aber nur auf wenige Meter weit nachweisen läßt, sich bald zu einer Kiesbank auskeilt und dann ganz verschwindet.

Seiner petrographischen Zusammensetzung nach ist dieser Obere Geschiebemergel (ebenso wie der Untere) ein vollständig schichtungsloses Gemenge der verschiedenartigsten skandinavischen usw. Gesteine aller Größen mit grobem und feinem Sand und Ton, eine Reibungsbreccie ganz entsprechend der Grundmoräne der jetzigen Gletscher, und stellt die Grundmoräne der letzten diluvialen Inlandseisdecke dar; am Ausgehenden am Oderufer, wo er der Verwitterung zugänglich war, besitzt er eine braune bis gelbbraune Farbe — die Farbe des ursprünglichen unverwitterten Mergels war wohl blaugrau — und geht oberflächlich zum Teil sogar in kalkfreien Lehm über.

Während so Unterer Sand und Oberer Mergel nur als mehr oder minder schmale Bänder am Rande der Diluvialhochfläche auftreten, wird deren ganze Oberfläche von sehr mächtigen Oberen Sanden (88) bedeckt. Diese erreichen schon an dem durch die Erosion sehr erniedrigten Rande die Mächtigkeit von 5-10 m und da sich der Obere Geschiebemergel sowohl am Oder- wie am Schlibbeufer in ungefähr 10-15 m Höhe über N.-N. hält, die Hochfläche im Durchschnitt aber bis zu 50—53 m Höhe ansteigt, so kann man die eigentliche Mächtigkeit der Oberen Sande auf 31-40 m und darüber veranschlagen. Es sind im großen ganzen ziemlich feinkörnige und oberflächlich fast garnicht geschiebeführende Sande, die nur stellenweise an ihrer unteren Grenze dicht über dem Geschiebemergel deutliche Schichtung zeigen und dort auch ab und zu einige eingeschaltete Kiesbänkehen aufweisen. Ihre Oberfläche zeigt einen sehr unregelmäßigen Wechsel von Erhebungen und Vertiefungen, die meistens mit ziemlich steilen Abhängen ineinander übergehen und nur nördlich von Güstebiese ist die Oberfläche etwas ebener und regelmäßiger gestaltet.

Die Wassermassen, die diese Oberen Sande abgelagert haben, haben, wie schon erwähnt, den Oberen Geschiebemergel stellenweise vollständig, anderwärts bis auf eine dünne Kiesbank erodiert, sodaß dann die Oberen Sande unmittelbar auf den Unteren liegen und eine genaue Grenze zwischen beiden sich nicht feststellen läßt.

Am Süd- und Westrande des Blattes sind — im Anschluß an die Nebenblätter — einige der unter dem Schlick durchstoßenden Sandflächen als Talsand ∂as_{φ} dargestellt worden. Beweise dafür, daß dies wirkliche Talsandflächen sind, haben sich auf diesem Blatt nicht ergeben; auch ließ sich keine unzweifelhafte Grenze zu den zweifellosen — zum Teil mit Schlick wechsellagernden — Alluvialsanden finden (in denen zum Teil menschliche Artefakte gefunden sind). Immerhin zeigen die später (S. 10) besprochenen Verhältnisse bei Thöringswerder und Jaeckelsbruch, daß unmittelbar unter dem Schlick stellenweise eingeebnete Reste älterer diluvialer Bildungen liegen müssen.

Das Alluvium

Von den Bildungen des Alluviums nimmt der Schlick (st) bei weitem den größten Raum ein und beansprucht die größte Bedeutung. Er bedeckt mit sehr geringen Ausnahmen fast das ganze Niederungsgebiet und nur an wenigen Stellen wird er von den darunter liegenden Sanden durchstoßen oder von den Ubersandungen jüngerer Uberschwemmungen bedeckt. Er besteht in seiner reinsten Ausbildung aus fast vollständig sandfreiem, sehr zähem Tone, der in den oberen Teilen schokoladenbraun bis gelblich-braun, in den tieferen Teilen sehr oft, wahrscheinlich durch Vivianit, blau gefärbt ist. In dieser reinen Ausbildung und in einer Mächtigkeit von 2 m und darüber findet er sich aber nur in beschränkter Ausdehnung in der Umgebung von Neu-Barnim, Neu-Lewin, Kerstenbruch und Karlshof; in dem bei weitem größten Teile des Gebietes zeigt er eine mehr oder minder sandige Ausbildung, sowohl derart, daß er größere oder geringere Sandmengen beigemengt enthält, als auch, indem er mit Schichten und Strahlen von

sehr sandigem Ton, tonigem Sand und reinem Sand wechsellagert. Eine feste Grenze zwischen Schlick und Sandablagerungen läßt sich an vielen Stellen eigentlich überhaupt nicht ziehen, da einerseits der reine, zähe Ton durch allmähliche Sandanreicherung ganz unmerklich in sandigen und sehr sandigen Schlick und dann weiter in tonigen Sand bis reinen Sand übergeht, andererseits die Wechsellagerung von sandigem Schlick, tonigem Sand und reinem Sand äußerst innig und vielfach wiederholt ist.

Oft enthält der Schlick auch größere oder geringere Beimengungen von Humus und an ziemlich zahlreichen Stellen finden sich kleine Torflager in ihm eingeschaltet. Besonders in sandiger bis sehr sandiger Ausbildungsform und in Tiefen über 1 m enthält er oft recht beträchtliche Beimengungen von Vivianit. Seine Mächtigkeit ist, wie schon erwähnt, sehr wechselnd, von über 2 m vermindert sie sich oft bis auf wenige Zentimeter; ja an einigen Stellen bei Alt-Lewin und Gieshof fehlt er auf ziemliche Erstreckung ganz und läßt den darunter liegenden Sand frei zutage treten. Unter den Stellen, wo die Schlickbedeckung sehr dünn und oft unterbrochen ist, zeichnet sich besonders ein schmaler, ganz scharf hervortretender Streifen aus, der, von der Stelle ausgehend, wo der Güstebieser Weg die alte Oder kreuzt, sich über Neu-Karlshof, Karlshof, Neu-Lietzegöricke südlich von Ferdinandshof über Friedrichshof und die Zäckericker Loose erstreckt und sicher einen alten, sehr spät versandeten und deshalb nur erst schwach mit Schlick überzogenen Oderarm darstellt.

Was die größere oder geringere Reinheit des Schlickes anbetrifft, so ist zu bemerken, daß sich die sehr zähe, fast sandfreie Ausbildungsart fast immer nur da findet, wo er auch größere Mächtigkeit (0,5 m und darüber) erreicht; wo er nur eine dünne Decke über dem darunter liegenden Sande bildet oder mit Sandschichten in häufiger Wechsellagerung sich befindet, zeigt er auch fast immer eine mehr oder minder sandige Beschaffenheit.

Der Alluvialsand (s) tritt entweder als ältere Schicht unter dem Schlick hervor, wie in den beiden schon erwähnten größeren Flächen bei Alt-Lewin und Gieshof, außerdem aber noch in zahlreichen kleinen, ziemlich über das ganze Blatt zerstreuten Stellen, oder er findet sich als bank-, linsen- oder strahlenförmige Einlagerung im Schlick oder endlich als Merkzeichen neuer Überschwemmungen auf dem Schlick aufgelagert. Diese jüngsten Sandablagerungen bedecken fast den ganzen, nicht eingedeichten Teil der Niederung und zwar großenteils in einer Mächtigkeit von mehr als 2 m; sie finden sich in ziemlicher Ausdehnung auf der linken Seite des Oderdammes zwischen der alten Oder und der Zollbrücke als Hinterlassenschaft des großen Dammbruches von 1836; endlich bedecken sie fast das ganze Gebiet zwischen den Dämmen der alten Oder.

In den linsenförmigen Sandeinlagerungen im Schlick sind mehrmals Reste von Booten mit Fischereigerätschaften, einmal sogar ein uralter eichener Einbaum mit Steinwerkzeugen gefunden worden.

Bei Thöringswerder und Jäckelsbruch liegen in dem Sande unter der hier sehr schwachen Schlickbedeckung eine Masse von Geschieben, die nach den Angaben der Einwohner teilweise geradezu die Beschaffenheit einer Geschiebepackung annehmen. Es sind große bis sehr große Blöcke, die teilweise so dicht unter der Oberfläche liegen, daß sie schon beim Ausstechen der flachen Entwässerungsgräben zum Vorschein kommen, und die in solchen Massen vorhanden sind, daß diese so beiläufig bei Grabenanlagen und beim Ausschachten von Fundamenten gefundenen Geschiebe das ganze zum Bau der Zuckerfabrik Thöringswerder und vieler Gebäude der Ortschaften Eichwerder und Jäckelsbruch nötige Material geliefert haben, und daß ein großer Teil des zum Bau der dortigen Chaussee verwendeten Materials ebenfalls durch Graben an diesen Stellen gewonnen ist. Höchstwahrscheinlich bilden diese Geschiebemassen die Reste der bei der Erosion des Odertals fortgeführten Diluvialbildungen.

Torf findet sich oberflächlich nur in sehr geringer Verbreitung an wenigen tief gelegenen, nassen Stellen. Häufiger schon tritt er in Form von Einlagerungen im Schlick auf, die meistens allerdings nur geringe Ausdehnung und Mächtigkeit haben und nur in der Umgegend von Ferdinandshof, Friedrichs-

hof und Neu-Rüdnitz etwas größere zusammenhängende Lager bilden. Am häufigsten und verbreitetsten aber findet er sich als Zwischenlagerung zwischen dem Schlick und dem Untergrunde des Bruches. In dieser Lagerungsform findet er sich in großer Ausdehnung besonders im Süden des Gebietes.

In den tieferen Schichten des Torfes findet sich oft eine merkwürdige, wohl als Eisenmoor zu bezeichnende Bildung von tiefschwarzer Farbe und schmieriger Beschaffenheit, die augenscheinlich stark eisenhaltig ist und, mit Salzsäure behandelt, Schwefelwasserstoff entwickelt.

Moorerde (h) findet sich nur an wenigen kleinen Stellen am Südrande des Blattes und ist ihrer Zusammensetzung nach meistens als sandiger, seltener als toniger Humus zu bezeichnen.

Wiesenkalk (k) ist nur in zwei kleinen Nestern bei Thöringswerder und auf den Bliesdorfer Loosen gefunden und war beide Male von ziemlich unreiner, toniger Beschaffenheit.

III Bodenbeschaffenheit

Von den Hauptbodenarten sind auf Blatt Neu-Lewin vier vertreten, nämlich: Tonboden, Lehmboden, Sandboden und Humusboden.

Der Tonboden

nimmt bei weitem den größten Raum ein, da er den Hauptteil der Niederung bildet. Er zeichnet sich durch seine größe Fruchtbarkeit aus und erweist sich meistens als vorzüglicher Weizen- und Rübenboden (I. und II. Kl.) Wo seine Mächtigkeit 0,5 m und darüber beträgt, ist er meistens von sehr zäher, fetter Beschaffenheit mit geringer oder verschwindender Sandbeimengung und daher schwierig zu bestellen. Bei geringerer Mächtigkeit (etwa 5—3 dcm) ist die Sandbeimengung meistens schon so merklich, daß man ihn petrographisch als sandigen Ton bezeichnen muß, aber auch hier ist der Tongehalt noch so sehr überwiegend, daß er noch einen sehr zähen und fruchtbaren Boden darstellt, auf den Weizen und Rüben sehr gute Erträge liefern.

Stellenweise wird dieser Schlick auch als Material zur Ziegelfabrikation gebraucht, wozu er sich auch vorzüglich eignet.

Als

Lehmboden

muß man den Schlick in seiner sehr sandigen Ausbildungsform bezeichnen, wo er entweder nur als eine dünne, weniger als 3 dem mächtige Schicht den Sand bedeckt, so daß bei der Beackerung der Pflug schon den darunter liegenden Sand heraufbringt und mit ihm vermischt, oder an den Stellen, wo eine schwache Übersandung durch die Beackerung mit dem darunter liegenden Schlick durcheinander gearbeitet ist oder wo eine innige Wechsellagerung toniger und sandiger Schichten durch den Ackerbau zu einem gleichartigen Gebilde gestaltet ist. Wo, wie in den beiden letzten Fällen, nur die oberste Schicht eine ungewöhnlich sandige Beschaffenheit angenommen hat und auf Schlickuntergrund ruht, ist er immer noch ein vorzüglicher Ackerboden, auf dem Weizen und Rüben große Erträge liefern. Im ersten Falle dagegen, wo durchlässiger Sanduntergrund vorhanden ist, ist es nur ein für Roggenbau geeigneter Boden und liefert auch nur in nicht zu trockenen Jahren zufriedenstellende Erträge.

Außerdem findet sich Lehmboden in sehr geringer Ausdehnung auf der diluvialen Hochfläche dicht am Oderufer, wo durch die Erosion der Obere Geschiebemergel auf kleine Strecken von den darüberlagernden Oberen Sanden befreit ist.

Der Sandboden

gehört zum größten Teile der diluvialen Hochfläche an, die, wie schon erwähnt, fast ganz von Oberem Sande bedeckt ist. Es ist ein äußerst unfruchtbarer Boden, da der Sand schon an dem durch die Erosion stark abgetragenen Oderufer 5—10 m mächtig ist, weiter landeinwärts wahrscheinlich aber überall 30—33 m Mächtigkeit erreicht, daher völlig trocken ist und sich eigentlich nur zum Waldbau verwenden läßt. Die geringen Flächen, die in der Nähe vor Güstebiese und Alt-Lietzegöricke als Kartoffelland in Bewirtschaftung genommen sind, liefern nur höchst geringe Erträge.

Soweit der Sandboden durch den Alluvialsand der Niederung gebildet ist, wird er an den tiefer gelegenen feuchteren Stellen meistens als Wiese benutzt.

Als Ackerland liefert er nur sehr schwache Erträge, da in den wenigen Fällen, wo überhaupt Schlickuntergrund vorhanden ist, dieser meistens so tief liegt, daß seine Feuchtigkeit erhaltende Kraft nicht mehr zur Geltung kommt. In den nicht eingedeichten Teilen der Niederung liegen diese Sandböden zum großen Teil ohne jede Bewirtschaftung, oder sind nur mit dürftigen Weidenpflanzungen bestanden, da die kümmerlichen Erträge der günstigen Jahre die Gefahr der Zerstörung durch Sommerhochwasser nicht aufwiegen.

Der Humusboden

ist teils als Torf teils als Moorerde, doch nur in geringer Ausdehnung, hauptsächlich am Südrande des Blattes vorhanden und wird zum Teil als Wiese, an den trockener gelegenen Stellen auch als Ackerland benutzt; er liefert dort auch recht gute Erträge.

Ein Mittelglied zwischen Humus- und Sandboden bildete ein Teil der Abschlämmassen (am Oderufer) beim Dorfe Alt-Lietzegöricke und in dem kleinen Nebentale westlich von Güstebiese, die stellenweis so humos werden, daß sie geradezu als Moorerde zu bezeichnen sind. Diese liefern einen ausgezeichneten Boden für Gemüse- und besonders für Tabakbau und liefern außerordentlich reiche Erträge.

IV Mechanische und chemische Bodenuntersuchungen

Allgemeines

Die den Erläuterungen beigegebenen Bodenanalysen bieten bezeichnende Beispiele der chemischen und mechanischen Zusammensetzung von den wichtigeren und in größerer Verbreitung auf dem Blatte selbst oder in dessen Nachbarschaft vorkommenden unverwitterten Ablagerungen und von den aus ihnen durch die Verwitterung hervorgegangenen Bodenarten. Sie dienen zur Beurteilung und zum Vergleich mit ähnlich zusammengesetzten Bildungen.

Die meist von den Ackerkrumen ausgeführten Nährstoffbestimmungen wurden in der Weise hergestellt, daß die Böden mit kochender konzentrierter Salzsäure behandelt und in den hierdurch erhaltenen Auszügen die Pflanzennährstoffe bestimmt wurden. Diese Nährstoffanalysen enthalten demnach das gesamte im Boden enthaltene Nährstoffkapital, sowohl das unmittelbar verfügbare als auch das der Menge nach meist weitaus überwiegende noch nicht aufgeschlossene, das erst nach und nach durch die Verwitterung oder durch zweckentsprechende Behandlung des Bodens nutzbar gemacht werden kann.

Da demnach diese Nährstoffanalysen nicht die auf einer bestimmten Ackerfläche unmittelbar zu Gebote stehenden Pflanzennährstoffe angeben, so können sie auch nicht ohne weiteres zur Beurteilung der erforderlichen Düngerzufuhr eines Ackers verwendet werden, denn es kann beispielsweise ein Boden einen hohen Gehalt von unaufgeschlossenem Kali besitzen und doch dabei einer Düngung mit leicht löslichen Kalisalzen sehr benötigen.

Die Bestimmung der Aufnahmefähigkeit für Stickstoff geschah nach der von Knop angegebenen Methode. 50 g Feinerde (unter 0,5 mm Durchmesser, mittelst eines Lochsiebes erhalten) wurden mit 100 ccm Salmiaklösung nach Knops Vorschrift behandelt und die aufgenommene Stickstoffmenge auf 100 g Feinerde berechnet. Die Zahlen bedeuten also die von 100 Gewichtsteilen Feinerde aufgenommenen Mengen Salmiak, ausgedrückt in Kubikzentimetern (oder Gramm) des darin enthaltenen und auf 0° C. und 760 mm Barometerstand berechneten Stickstoffs.

Näheres über die methodische Seite dieser Analysen findet sich in den Schriften: "Die Untersuchung des Bodens der Umgegend von Berlin", bearbeitet von Dr. Ernst Laufer und Dr. Felix Wahnschaffe und "Anleitung zur wissenschaftlichen Bodenuntersuchung" von Dr. Felix Wahnschaffe, Berlin, 2. Auflage 1903.

Verzeichnis und Reihenfolge der Analysen

Lau- fende Num- mer	Bodenart	Bodenart Fundort				
	A Bode	enprofile und Bodenarten				
1	Lehmiger Boden des Oberen Diluvialmergels	Aufschluß nordnordwestlich von Herzhorn	Möglin	6, 7		
2	desgl.	Mergelgrube bei Münchehofe	Müncheberg	8, 9		
3	desgl.	Lehmgrube von Bollersdorf	,,	10, 11		
4	Oberes Diluvium	Wulkow SW., Grube am Obersdorfer Wege	Trebnitz	12, 13		
5	Toniger Boden des Oberen Diluvialmergelsandes	Hartwigsche Steingrube bei Karlstein	Zehden	14, 15		
6	Sandboden des Oberen Dilu- vialsandes	Buckower Forst	Müncheberg	16, 17		
7	desgl.	Am Wege von Strausberg nach Klosterdorf	Strausberg	18, 19		
8	Tonboden des Schlickes	Nordwestlich von Neu- Küstrinchen	Freienwalde	20, 21		
9	Waldkrume des Radaune- mergels	Freienwalde	,	22, 28		
10	Tonboden des Schlickes	Zwischen Kienwerder und Neu-Rosenthal	Neu-Trebbin	24, 25		
11	desgl.	Südwestlich vom Bahnhof Neu-Trebbin	The state of the s	26, 27		
12	desgl.	Südlich von Herrenwiese bei Klein-Neuendorf	,	28, 29		
13	desgl.	Wiese in der Mitte zwischen Horst und Kienwerder	,	30, 31		

Lau- fende Num- mer		Fundort	Blatt	Seite
14	Tonboden des Schlickes	1,6 km nordwestlich vom Bahnhof Neu-Trebbin	Neu-Trebbin	82, 38
15	desgl.	Zwischen Vorwerk Herrnhof und Vorwerk Königshof	,	34, 35
16	desgl.	Am Wege von Alt- nach Neu-Rüdnitz	Zehden	36, 37
17	desgl.	Nördlich von Neu-Rüdnitz	,	38, 39
18	desgl.	0,4 km südlich von Neu- Rüdnitz	Neu-Lewin	40, 41
19	desgl.	Südwestlich von Heinrichs- dorf	,,	42, 43
20	desgl.	Wiese südöstl. von Thörings- werder	•	44, 45
21	Lehmboden des Schlickes	Güstebieser Lose, nahe dem Ostrande des Blattes		46, 47
22	desgl.	desgl.		48, 49
23	Tonboden des Schlickes	Südwestl. von Kerstenbruch	,,	50
24	desgl.	Südöstlich des Dorfes Neu- Rüdnitz		51
25	desgl.	Nordöstlich von Karlshof	,,	52
26	desgl.	Zäckericker Lose	,,	53
27	desgl.	Nordöstlich von Kerstenbruch	,	54
28	desgl.	Nordwestl. von Neu-Rüdnitz	,	55
29	desgl.	Nördlich von Neu-Barnim	,	56
30	desgl.	Östlich von Thöringswerder	,,	57
31	desgl.	Nordwestlich der Zollbrücke am Oderteiche		58, 59
32	Lehmboden des Schlickes in dünner Decke über Sand	Südlich von Sietzing	Neu-Trebbin	60, 61
33	Sandboden des Talsandes	Aufschluß nordöstlich von Karlsdorf		62, 63
34	Sandboden des Alluvialsandes	Südlich von Klein-Barnim	,,	64, 65
35	Sandboden des Dünensandes	Nordwestlich von Quappen- dorf	,	66, 67
86	Kalkboden des Wiesenkalkes	Zwischen Neu-Hardenberg und Vorwerk Bärwinkel	,	68, 69
37	Radaunemergel	Freienwalde	Freienwalde	70-75

86

Lau- fende Num- mer	Bodenart	Fundort	Blatt	Seite
38	Moormergel über Sand	Chaussee Gussow-Platkow, Ost-Platkow	Trebnitz	76, 77
39	desgl.	Nördlich von Neu-Hardenberg		78, 79
40	Humusboden des Moormergels	Östlich von Cunersdorf	Neu-Trebbin	80, 81
	Schlickanalysen aus dem Ode	erbruche		82, 83
	B Einzelbestin	mungen diluvialer Gebirgsarten		
41	B Einzelbestin Unterdiluvialer Mergelsand	mungen diluvialer Gehirgsarten Hohlweg am Dorfe Nieder- görlsdorf	Trebnitz	84

5 Kalkbestimmungen aus dem Bereiche des Blattes Trebnitz

12 Kalkbestimmungen von den Nachbarblättern

A Bodenprofile und Bodenarten Höhenboden

Lehmiger Boden des Oberen Diluvialmergels Aufschluß nordnordwestlich von Herzhorn, vor dem Wege von Sternebeck nach Frankenfelde (Blatt Möglin)

R. GANS

I Mechanische und physikalische Untersuchung
a) Körnung

_						
Tiefe der Ent- nahme dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Summa
0—1,5		Schwach humoser lehmiger Sand (Ackerkrume)	ЙLS	9,6	63,0 27,4 3,5 10,1 20,8 18,9 9,7 10,3 17,1	100,0
2,5		Sehr sandiger Lehm (Untergrund)	ŜL	2,6	48,4 49,0 1,8 5,6 14,8 17,2 9,0 14,0 35,0	100,0
5	∂m	Sandiger Lehm (Tieferer Untergrund)	SL	1,3	43,9 54,8 1,5 4,7 14,2 14,8 8,7 14,6 40,2	100,0
10		Sandiger Mergel (Tieferer Untergrund)	SM	1,3	50,7 48,0 1,6 5,4 14,8 18,2 10,7 17,9 30,1	100,0
20		Mergel (Tiefster Untergrund)	М	3,3	43,1 53,6 2,2 4,6 12,5 14,8 9,0 16,2 37,4	100,0

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung der Schicht	Tiefe der Ent- nahme dm	100 g F	ahmefähigk 'einboden r 2 ^{mm}) nehmen au	100 g (unter	Feinerde 0,5 ^{mm})	nach zwei E 100 ccm Feinboden	chaltende raft Bestimmungen 100 g (unter2mm) Wasser Gewichts- prozente g
Ackerkrume .	0-1,5	21,8	0,0274	25,7	0,0322	30,0	18,6

·II Chemische Analyse a) Nährstoffbestimmung der Ackerkrume

Bestandteile	Auf lufttrocknen Feinboden berechne in Prozenten	
Auszug mit konzentrierter kochender Salzsäure bei einstündiger Einwirkung		
Tonerde	1,148	
Eisenoxyd	1,148	
Kalkerde	0,108	
Magnesia	0,220	
Kali	0,120	
Natron	0,056	
Kieselsäure	0,052	
Schwefelsäure	0,009	
Phosphorsäure	0,038	
2. Einzelbestimmungen	The state of the s	
Kohlensäure (gewichtsanalytisch)	0,043	
Humus (nach Knop)	1,130	
Stickstoff (nach Will-Varrentrapp)	0,051	
Hygroskopisches Wasser bei 105° Cels	0,672	
Glühverlust ausschl. Kohlensäure, hygroskop. Wasser		
und Humus	1,058	
In Salzsäure Unlösliches (Ton, Sand und Nichtbestimmtes)	94,147	
Summa	100,000	

b) Tonbestimmung

Aufschließung der bei 110°C. getrockneten tonhaltigen Teile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220°C. und sechsstündiger Einwirkung

Bestand- teile	Acker (aus 0,— in Prozer Schlämm- produkts	1,5 dm' iten des	Unterg (aus 2, in Prozei Schlämm- produkts	5 dm) aten des Ge- samt-	Tief Unter (aus in Prozei Schlämm- produkts	grund dm) nten des	Tiefe Unterg (aus I in Prozen Schlämm- qrodukts	grund 0 dm) nten des	Tiefe Unterg (aus 2 in Prozen Schlämm- produkts	grund 0 dm) aten des Ge- samt-
Tonerde*). Eisenoxyd.	7,521 2,841	2,061 0,778	13,559 6,324	6,644 3,099	14,756 5,484	8,086 3,005	12,609 4,761	6,052 2,285	9,398 4,433	5,037 2,376
Summa	10,362	2,839	19,883	9,743	20,240	11,091	17,370	8,337	13,831	7,413
*) Entspräche wasserhalt. Ton	19,024		34,296					15,309	23,771	12,741
		c)	Kalkbest	timmung	(nach	Scheil	oler)		- I cad	

Kohlensaurer Kalk im Feinboden (unter 2mm):							Tieferer Ut 10 dm in Proz	20 dm		
Nach der ersten Bestimmung			:		:				1,60 1,58	11,36 11,34
" zweiten "	N. Contraction							el		11,35

^{*)} Der Gehalt an kohlensaurem Kalk ist in den oberen Teilen des Mergels durch stattgehabte Auslaugung bedeutend geringer.

Höhenboden

Lehmiger Boden des Oberen Diluvialmergels

Mergelgrube bei Münchehofe, westlich vom Dorfe (Blatt Müncheberg)

R. Gans

I Mechanische und physikalische Untersuchung

1					aj	Korni	ing					
Tiefe der Ent- nahme dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2— 1 ^{mm}	1— 0,5 ^{mn}		0,2—		T		Summa
0-2		Schwach humoser sehr san-	НŠL	2,3			61,	ı		36,6		100,0
		diger Lehm (Ackerkrume)			2,5	6,7	19,4	22,4	10,1	13,4	23,2	one d
	∂m	Lehm		1,5			53,8	3		4	4,7	100,0
4	0111	(Flacher Untergrund)	L		2,0	5,8	18,0	19,9	8,1	11,7	33,0	
-		Mergel		2,5		62,7				3	100,0	
30		(Untergrund)	M		2,4	6,1	20,0	23,4	10,8	12,7	22,1	

a) Aufnahmefähigkeit für Stickstoff (nach Knop) und b) Wasserhaltende Kraft

	Tiefe	Aufna	hmefähigk	Wasserhaltende Kraft			
Bezeichnung der Schicht	der 100 g Feinboden Ent- (unter 2 ^{mm}) nahme nehmen au		(unter	Feinerde 0,5 ^{mm}) ff	nach zwei Bestimmunge 100 ccm 100 g Feinboden (unter2mm halten Wasser Volum- Gewichts-		
	dm	cem	g	eem	g	prozente	prozente g
Ackerkrume	0-2	59,2	0,0748	65,4	0,0821	32,8	19,0

II Chemische Analyse

a) Nährstoffbestimmung der Ackerkrume

Bestandteile	Auf lufttrocknen Feinboden berechne in Prozenten
1. Auszug mit konzentrierter kochender Salzsäure bei einstündiger Einwirkung	
Tonerde	2,340
Eisenoxyd	2,225
Kalkerde	0,684
Magnesia	0,496
Kali	0,323
Natron	0,079
Kieselsäure	0,076
Schwefelsäure	0,030
Phosphorsäure	0,072
2. Einzelbestimmungen	0.904
Kohlensäure (gewichtsanalytisch)	0,294
Humus (nach Knop)	1,748
Stickstoff (nach Will-Varrentrapp)	0,110
Hygroscopisches Wasser bei 1100 Cels	1,394
Glühverlust ausschl. Kohlensäure, hygroscop. Wasser	
und Humys	1,598
In Salzsäure Unlösliches (Ton, Sand und Nicht-	
bestimmtes)	88,531
Summa	100,00

b) Tonbestimmung

Aufschließung der bei 110°C. getrockneten tonhaltigen Teile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220°C. und sechsstündiger Einwirkung

Bestandteile	Ackerkru in Proze	nten des	in Proze	d (L) nten des	Untergrund (M) in Prozenten des	
	Schlämm- produkts		Schlämm- produkts	Gesamt- bodens	Schlämm- produkts	Gesamt- bodens
Tonerde*)	11,268	4,124	13,853	6,192	7,818	2,721
	5,758	2,107	7,668	3,428	4,556	1,586
Summa *) Entspräche wasserhalt. Ton .	17,026	6,231	21,521	9,620	12,374	4,307
	28,501	10,431	35,040	15,663	19 775	6,882

c) Kalkbestimmung (nach Scheibler)

Kohlensaurer Kalk im Feinboden (unter 2mm):	In Prozenten
Nach der ersten Bestimmung	7,92 8,01
im Mittel	7,97

Höhenboden

Lehmiger Boden des Oberen Diluvialmergels Lehmgrube von Bollersdorf, nördlich von Hasenholz (Blatt Müncheberg) F. Wahnschaffe und R. Gans

I Mechanische und physikalische Untersuchung

a) Körnung

Tiefe der Ent- nahme dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2— 1 ^{mm}	1— 0,5 ^{mm}		0,2—	0,1— 0,05 ^{mm}	To Staub	naltige eile Feinstes unter 0,01 ^{mm}	Summa
0-3		Schwach humoser lehmiger	ЙLS	3,5			58,8	3		3	7,9	100,2
		Sand (Ackerkrume)	100000		1,9	5,5	14,3	24,8	12,3	15,6	22,3	
	2	Sehr sandiger	-	3,3			57,1			3	9,6	100,0
5	∂m	Lehm (Flacher Untergrund)	ŠL		4,0	6,4	17,0	18,7	11,0	14,6	25,0	
		Lehm		0,7			37,4			6	1,9	100,0
10		(Untergrund)	L		1,0	3,8	11,9	13.4	7,3	12,0	49,9	

b) Aufnahmefähigkeit der Ackerkrume für Stickstoff nach Knop

100 g Feinboden (unter 2^{mm}) nehmen auf: 21,2 ccm = 0,0267 g Stickstoff 100 g Feinerde (unter 0.5^{mm}) , 23,0 ccm = 0,0289 g ,

II Chemische Analyse

a) Nährstoffbestimmung der Ackerkrume

Bestandteile	Auf lufttrocknen Feinboden berechnet In Prozenter
Auszug mit konzentrierter kochender Salzsäure bei einstündiger Einwirkung	ingle Zoniel
Tonerde	1,080
Eisenoxyd	1,061
Kalkerde	0,108
Magnesia	0,193
Kali	0,121
Natron	0,176
Phosphorsäure	0,036
2. Einzelbestimmungen	
Humus (nach Knop)	1,410
Stickstoff (nach Will-Varrentrapp)	0,210
Hygroskopisches Wasser	1,315
Summa	5,710

b) Tonbestimmung

Λufschließung der tonhaltigen Teile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

Bestandteile	Flacher grund in Proze Schlämm- produkts	(\$L) nten des Gesamt-	Untergr in Proze Schlämm- produkts	
Tonerde*)	9,461	3,747	14,182	8,779
Eisenoxyd	4,568	1,809	6,812	4,217
Summa	14,029	5,556	20,994	12,996
*) Entspräche wasserhaltigem Ton .	23,931	9,477	35,872	22,205

Höhenboden

Oberes Diluvium — Geschiebemergel-Profil

Wulkow südwestlich der Grube am Obersdorfer Wege (Blatt Trebnitz)

R. Gans

I Mechanische Untersuchung Körnung

		THE REAL PROPERTY.				A. A.			in the second	America Company	THE A	3-1-1
Tiefe der Ent- nahme dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2-	1— 0,5 ^{mm}		0,2—	0,1— 0,05mm	Staub 0,05—	naltige eile Feinstes unter 0,01 ^{mm}	Summa
0—2		Ober- diluvialer Geschiebe-	LS	5,0			58,0	3		4	1,4	100,0
		mergel (Ackerkrume)			1,4	4,0	14,6	21,0	12,6	10,6	30,8	
	2	Sandiger		2,6			53,6	3		4	3,8	100,0
10	∂m	Lehm (Untergrund)	SL		1,4	4,8	13,8	21,0	12,6	9,2	34,6	
N.		Sandiger		3,2			62,4			3	4,4	100,0
20		Mergel (Tieferer Untergrund)	SM		2,6	6,0	17,0	22,6	14,2	10,4	24,0	

II Chemische Analyse

Kalkbestimmung

nach Scheibler

	Kohlensaurer Kalk im Feinboden (unter 2mm) des Tieferen Untergrundes (SM):											In Prozenten			
Nach	der ersten	Bestimmung													9,04
, ,	" zweiten														9,11
										· Total	im	M	itt	el	9,08

Bei dem flacheren Untergrund (L) ist kein kohlensaurer Kalk nachweisbar.

Höhenboden

Toniger Boden des Oberen Diluvialmergelsandes Hartwig'sche Steingrube bei Karlstein¹) (Blatt Zehden) R. Gans

I Mechanische und physikalische Untersuchung
a) Körnung

		and the same of th	and the second		110000		11000					
Tiefe der Ent- nahme dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2— 1 ^{mm}	1— 0,5 ^{mm}	S a n	0,2-	0,1— 0,05mm	Staub	naltige eile Feinstes unter 0,01 ^{mm}	Summa
Ober- fläche		Schwach humoser toniger Sand	нтѕ	4,9	2,3	3,4	48,5	13,0	23,9	32,8	6,9	100,0
4	1	(Ackerkrume) Toniger Sand	TS	3,4		it ye	47,7		Coll II	4	8,9	100,0
11 12	0 h	(Flacher Untergrund) Sandiger Ton		0,2	1,6	2,2	38,8	11,7	27,8	36,4	12,5	100,0
7		(Tieferer Untergrund) Sandig	ST		0,2	0,4	2,3	10,5	25,4	41,6	19,4	
15	iowd	mergeliger Ton (Tiefster Untergrund)	SMT	2,1	0,8	2,0	32,7	6,2	20,3	47,4	17,8	100,0

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung der Schicht	Tiefe der Ent- nahme	100 g F (unter	nhmefähigk einboden r 2 ^{mm}) nehmen au	100 g l	Feinerde 0,5mm)	nach zwei H 100 ccm Feinboden	haltende raft Bestimmungen 100 g (unter2mm) Wasser Gewichts- prozente
	dm	cem	g	cem	g	cem	g
Ackerkrume .	Ober- fläche	39,8	0,0500	42,2	0,0530	82,6	20,2
Flacher Untergrund	4	36,9	0,0464	38,3	0,0481	29,5	18,3

¹⁾ Die Lage des Punktes konnte in der Karte nur ungefähr angegeben werden.

II Chemische Analyse

a) Nährstoffbestimmung

Bestandteile	Auf lufttrockn berec in Pro Ackerkrume	
Auszug mit konzentrierter kochender Salzsäure bei einstündiger Einwirkung		
Tonerde	1,444	1,296
Eisenoxyd	1,634	1,514
Kalkerde	0,308	0,230
Magnesia	0,301	0,270
Kali	0,152	0,120
Natron	0,064	0,059
Kieselsäure	0,058	0,055
Schwefelsäure	0,029	0,025
Phosphorsäure	0,081	0,058
2. Einzelbestimmungen		
Köhlensäure (gewichtsanalytisch)	0,037	0,028
Humus (nach Knop)	1,180	0,379
Stickstoff (nach Will-Varrentrapp)	0,073	0,030
Hygroskopisches Wasser bei 105° C.	0,841	0,619
Glühverlust ausschl. Kohlensäure, hygroskop. Wasser,		- 77
Humus und Stickstoff	1,192	1,018
In Salzsäure Unlösliches (Ton, Sand und Nicht-	A Company of the Comp	
bestimmtes)	92,394	94,299
Summa	100,00	100,00

b) Tonbestimmung

Aufschließung der bei 110° C. getrockneten tonhaltigen Teile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

Bestandteile	Ackerk in Prozen Schlämm- produkts	ten des Ge-	Flac Unterg in Prozen Schlämm- produkts	grund aten des	Tiefe Unterg in Prozen Schlämm- produkts	grund aten des	Tiefs Unterg in Prozes Schlämm- produkts	grund
Tonerde*)	4,346 2,764	2,038 1,296	4,024 2,582	1,968 1,263	5,696 3,623	3,475 2,210	3,787 2,737	2,469 1,785
Summa *) Entspräche wasserhalt. Ton .	7,110 10,993	3,334 5,156	100	3,231 4,977	9,319 14,408	5,685 8,789	6,524 9,579	4,254 6,246

c) Kalkbestimmung (nach Scheibler)

Kohlensaurer Kalk im Feinboden (unter 2mm) des Tieferen Untergrundes:	In Prozenten
Nach der ersten Bestimmung	12,94 13,03
im Mittel	12,99

Höhenboden (Waldboden)

Sandboden des Oberen Diluvialsandes

Buckower Forst, Kreuzpunkt der Wege Dahmsdorf—Buckow und Sieversdorf—Alte Mühle (Blatt Müncheberg)

R. GANS

I Mechanische und physikalische Untersuchung a) Körnung

Tiefe der Ent- nahme	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2— 1 ^{mm}	1— 0,5ատ		0,2—	0,1— 0,05mm	T Staub	raltige eile Feinstes unter 0,01 ^{mm}	Summa
0-3		Schwach humoser	йs	16,6			77,8	3			6,1	100,0
0-3	8	Sand (Ackerkrume)			5,9	18,4	29,8	20,0	3,2	3,5	2,6	
	08	Sand		12,7			82,0	,			5,3	100,0
5		(Untergrund)	S		6,9	24,2	36,6	12,4	1,9	2,2	3,1	

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung der Schicht	Tiefe der Ent- nahme	100 g I (unt	ahmefähigke Feinboden er 2 ^{mm})	Wasserhaltende Kraft nach zwei Bestimmungen 100 ccm 100 g Feinboden (unter2mm) halten Wasser Volum- Gewichts- prozente			
	dm	ccm	g	cem	g	ccm	g
Ackerkrume	0-3	7,6	0,0096	11,3	0,0142	29,5	16,5

II Chemische Analyse

Nährstoffbestimmung des schwach humosen Sandes

Bestandteile	Auf lufttrockne Feinboden berechnet in Prozente	
Auszug mit konzentrierter kochender Salzsäure bei einstündiger Einwirkung		
Tonerde	0,718	
Eisenoxyd	0,788	
Kalkerde	0,048	
Magnesia	0,096	
Kali	0,051	
Natron	0,048	
Kieselsäure	0,046	
Schwefelsäure	0,011	
Phosphorsäure	0,045	
2. Einzelbestimmungen		
Kohlensäure (gewichtsanalytisch)	0,037	
Humus (nach Knop)	0,559	
Stickstoff (nach Will-Varrentrapp)	0,015	
Hygroskop. Wasser bei 105° Cels	0,365	
Glühverlust ausschl. Kohlensäure, hygroskop. Wasser, Humus und Stickstoff	0,508	
In Salzsäure Unlösliches (Ton, Sand und Nichtbestimmtes)	96,665	
Summa	100,000	

Höhenboden

Sandboden des Oberen Diluvialsandes

Am Wege von Strausberg nach Klosterdorf, nahe der Scheune der Strafanstalt (Blatt Strausberg)

R. GANS

I Mechanische und physikalische Untersuchung a) Körnung

Tiefe der Ent- nahme dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2— 1mm	1— 0,5 ^{mm}		0,2-		T		Summa
0-2		Schwach humoser schwach	йĽS	8,9			78,9			1	2,2	100,0
	12	lehmiger Sand (Ackerkrume)			7,8	23,7	29,6	12,6	5,7	6,9	5,3	
	ðs.	Eisen- streifiger		34,5		,	56,7				8,8	100,0
5	00	Sand (Flacher Untergrund)	eS		7,4	19,9	20,8	6,3	2,3	4,1	4,7	
		Sand	Sand	8,3		100	87,2	120	143		4,5	100,0
10		(Untergrund)	S	ar III	10,6	33,9	31,2	9,8	1,7	1,6	2,9	

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung der Schicht	Tiefe der Ent- nahme	100 g F (unte	hmefähigk Teinboden r 2 ^{mm}) nehmen au	Wasserhaltende Kraft nach zwei Bestimmungen 100 ccm 100 g Feinboden (unter2mm) halten Wasser Volum- Gewichts- prozente prozente			
	dm	eem	g	.cem	g	cem	g
Ackerkrume .	0-2	8,5	0,0107	12,7	0,0160	19,6	10,4

II Chemische Analyse a) Nährstoffbestimmung der Ackerkrume

Bestandteile	Auf lufttrocknen Feinboden berechnet in Prozenten
1. Auszug mit konzentrierter kochender Salzsäure	
bei einstündiger Einwirkung	
Tonerde	0,774
Eisenoxyd	0,821
Kalkerde	0,079
Magnesia	0,116
Kali	0,042
Natron	0,032
Kieselsäure	0,038
Schwefelsäure	0,002
Phosphorsäure	0,067
2. Einzelbestimmungen	
Kohlensäure (gewichtsanalytisch)	0,031
Humus (nach Knop)	0,556
Stickstoff (nach Will-Varrentrapp)	0,027
Hygroskopisches Wasser bei 105° Cels	0,282
Glühverlust ausschl. Kohlensäure, hygroskop. Wasser, Humus und Stickstoff	0,610
In Salzsäure Unlösliches (Ton, Sand und Nichtbestimmtes)	96,523
Summa	100,000

b) Tonbestimmung

Aufschließung der bei 110° C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

	Ackerkrume (HLS) Urkrume (eS) in Prozenten des					
Bestandteile	Schlämm- produkts		Schlämm- produkts	Gesamt- bodens		
Tonerde*)	7,609	0,928	13,048	1,148		
	3,012	0,368	4,187	0,369		
Summa *) Entspräche wasserhaltigem Ton	10,621	1,296	17,285	1,517		
	19,246	2,348	83,004	2,904		

Niederungsboden

Tonboden des Schlickes

Nordwestlich von Neu Küstrinchen (Blatt Freienwalde)

R. Gans

1 Mechanische und physikalische Untersuchung a) Körnung

Tiefe der Ent- nahme dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	Sand 2	Tonhaltige Teile Staub Feinstes 0,05— unter 0,01 ^{mm} 0,01 ^{mm}	Sui
0-1	ast	Schlick (Ackerkrume)	нт	0,0	12,8	87,2	100,0
				Y AND			

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung	Tiefe der	Aufna 100 g Fe	hmefähigk inboden		ickstoff Teinerde	Kı	naltende eaft estimmungen 100 g
der Schieht	Ent- nahme			No. of the latest the	0,5 ^{mm})	Feinboden (unter2mm halten Wasser Volum- prozente prozente	
	dm	ccm	g	cem	g	cem	g
Ackerkrume .	0-1	115,8	0,1454	116,6	0,1464	55,6	43,1

a) Tonbestimmung

Aufschließung der bei 110° C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

Bestandteile	Ackerkrume in Prozenten des Schlämm- produkts bodens
Tonerde*)	. 13,302 11,599
Eisenoxyd	. 4,898 4,271
Summ	a 18,200 15,870
*) Entspräche wasserhaltigem Ton	. 33,646 29,339

b) Humusbestimmung nach Knop

Humusgehalt im Feinboden (unter 2 mm) 3,762 pCt.

Waldkrume des Radaunemergels

Freienwalde¹) (Blatt Freienwalde)

R. GANS

I Physikalische Untersuchung

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung der Schicht	Tiefe der Ent- nahme	100 g F	Aufnahmefähigkeit für Stickstoff 100 g Feinboden (unter 2mm) (unter 0,5mm) nehmen auf Stickstoff Wasserhaltend Kraft 100 ccm 100 g Feinboden (unter 2 halten Wasser volum- prozente prozente							
The second second	dm	cem	g	cem	g	ecm	g			
Ackerkrume	0-0,5	46,03	0,0575	52,31	0,0653	58,54	49,68			

¹⁾ Die Lage des Punktes konnte in der Karte nicht angegeben werden.

Nährstoff bestimmung der Waldkrume

Bestandteile	Auf lufttrocknen Feinboden berechnet in Prozenter
Auszug mit konzentrierter kochender Salzsäure bei einstündiger Einwirkung	
Tonerde	0,300
Eisenoxyd	3,628
Kalkerde	35,500
Magnesia	0,011
Kali	0,070
Natron	0,150
Kieselsäure	0,104
Schwefelsäure	0,062
Phosphorsäure	0,160
2. Einzelbestimmungen	
Kohlensäure (gewichtsanalytisch)	26,150
Humus ¹) (nach Knop)	5,635
Stickstoff (nach Kjeldahl)	0,335
Hygroskopisches Wasser bei 1050 Cels	3,071
Glühverlust ausschl. Kohlensäure, hygroskop. Wasser und Humus	4,521
In Salzsäure Unlösliches (Ton, Sand und Nichtbestimmtes	20,303
Summa	100,000

¹⁾ Der Humus besteht aus rotem und schwarzem Humus und zwar:

Summa 5,635 pCt.

Tonboden des Schlickes

Zwischen Kienwerder und Neu-Rosenthal (Blatt Neu-Trebbin) R. Gans

I Mechanische und physikalische Untersuchung
a) Körnung

Tiefe der Ent- nahme (Mäch- tigkeit) dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm			S a n 0,5— 0,2 ^{mm}	0,2—		T		Summa	
1		Humoser sandiger	нѕт	0,1			49,2			5	0,7	100,0	
(0-2)	ast	Ton (Ackerkrume)			0,4	8,2	31,6	5,7	3,3	14,3	36,4		
3	asi	Humoser eisen-		0,2			49,7			5	60,1	100,0	
(2-4)		haltiger Ton (Untergrund)	HET		0,6	8,3	32,8	4,3	3,7	11,8	38,3		
9		Sand									0,9		
(4-12)	8	(Tieferer Untergrund)	S		0,6	8,4	83,7	6,1	0,2	0,3	0,6		

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung der Schicht	Tiefe der Ent- nahme	100 g Fe (unter	hmefähigk einboden 2 ^{mm}) nehmen au	100 g I (unter	Feinerde 0,5mm)	nach zwei E 100 ccm Feinboden	haltende raft lestimmungen 100 g (unter2mm) Wasser Gewichts- prozente g
Humoser sandiger Ton	1	91,7	0,1152	101,0	0,1269	40,6	28,0
Humoser eisen- haltiger Ton.	8	101,8	0,1278	111,9	0,1404	39,0	26,1
Sand	9	5,7	0,0072	6,3	0,0079	34,3	20,6

II Chemische Analyse a Nährstoffbestimmung

Salaran and the salar and the salar and		ockenen F berechnet in Prozenten	'einbodeı	
Bestandteile	Humoser sandiger Ton	Humoser eisen- haltiger Ton	Sand	
Auszug mit konzentrierter kochender Salzsäure bei einstündiger Einwirkung				
Tonerde	4,147	4,536	0,288	
Eisenoxyd	2,524	2,664	0,238	
Kalkerde	0,524	0,558	0,042	
Magnesia	0,618	0,677	0,078	
Kali	0,220	0,194	0,040	
Natron	0,098	0,107	0,022	
Kieselsäure	0,121	0,122	0,023	
Schwefelsäure	0,057	0,043	0,016	
Phosphorsäure	0,306	0,126	0,031	
2. Einzelbestimmungen		W 100 000		
Kohlensäure (durch direkte Wägung)	0,046	0,034	0,010	
Humus (nach Knop)	3,585	1,396	0,067	
Stickstoff (nach Will-Varrentrapp)	0,223	0,088	0,000	
Hygroskopisches Wasser bei 105° Cels	3,253	3,566	0,142	
Glühverlust ausschl. Kohlensäure, hygroskop. Wasser, Humus und Stickstoff	3,967	3,489	0,298	
In Salzsäure Unlösliches (Ton, Sand und Nichtbestimmtes)	80,311	82,400	98,710	
Summa	100,000	100,000	100,000	

b Tonbestimmung

Aufschließung der bei 110° C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

	В	e s	t	a n	d	t e	i l	e			Humoser sa aus in Proze Schlämm-	nten des Gesamt-
											produkts	bodens
TonerJe*) Eisenoxyd	10.0		100								14,167 5,474	7,183 2,775
*) Entenräche										Summa	19,641 35,834	9,958 18,168

Tonboden des Schlickes

Südwestlich vom Bahnhof Neu-Trebbin (Blatt Neu-Trebbin)

R. GANS

I Mechanische und physikalische Untersuchung a) Körnung

Tiefe der Ent- nahme (Mäch- tigkeit) dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Summa
1 (0-2)		Humoser sandiger Ton (Ackerkrume)	нет	0,0	13,8 86,2 0,2 0,4 1,6 5,2 6,4 30,8 55,4	100,0
2,5 (2—3)	ast	Ton (Untergrund)	т	0,0	17,8 82,2 0,0 0,2 0,6 8,6 8,4 24,4 57,8	100,0
10 (3-14)		Eisen- haltiger Ton (Tieferer Untergrund)	ET	0,0	5,4 94,6 0,0 0,0 0,2 2,4 2,8 19,2 75,4	100,0

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung der Schicht	Tiefe der Ent- nahme	100 g F (unter	hmefähigk einboden r 2 ^{mm}) nehmen au	Feinerde 0,5mm)	nach zwei I 100 ccm Feinboder halten Volum-	ltende Kraft Bestimmungen 100 g n (unter2mm) Wasser Gewichts-	
Western Land	dm	com	g	cem	g	prozente	prozente
Humoser sand. Ton	1	117,8	0,1480	118,6	0,1490	48,1	37,5
Ton	2,5 10	123,4 132,3	0,1550 0,1662	123,4 132,3	0,1550 0,1662	47,3 53,2	34,5 38,3

II Chemische Analyse a) Tonbestimmung

Aufschließung der bei 110°C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220°C. und sechsstündiger Einwirkung

Bestandteile	Humoser sa aus in Proze Schlämmprod.	dm nten des	Ton aus 2,5 dm in Prozenten des Schlämmprod. Gesamtboden		
Tonerde*)	12,305	10,607	13,223	10,870	
	5,486	4,729	5,498	4,519	
Summa *) Entspräche wasserhaltigem Ton	17,791	15,836	18,721	15,389	
	31,124	26,829	33,449	27,495	

b) Nährstoffbestimmung

THE RESERVE	Bestandteile										Humoser Ton aus 1 dm aus 2,5 in Prozenten			
1. Auszug mi bei	t ko								Sa	lzs	äu	re		in it
Tonerde					-	-							5,465	5,904
Eisenoxyd													3,809	3,740
Kalkerde													0,785	0,756
Magnesia	1007									38	uida.	20	0,770	0,742
Kali											4	1	0,326	0,314
Natron									13		16	2 1	0,140	0,130
Kieselsäure .												4	0,128	0,124
Schwefelsäure								9				-	0,092	0,085
Phosphorsäure													0,176	0.076
	2. Ei	nzell	pesti	mm	nn	get	1.							
Kohlensäure (-			100		- 05		0,124	. 0,057
Humus (nach	Kno	p).		-		1							7,617	2,366
Stickstoff (nac	h W	ili-V	arr	en	tra	DI	1).					950	0,464	0,158
Hygroskopisch	es V	Vasse	er be	ei 1	05	o C	els						5,702	5,400
Glühverlust au	sschl	.Koh	lens	äur	e, h	ve	ros	sko	p.V	Va	sse	r.	310000	
Humus und											-		5,865	4,683
In Salzsäure	Jnlös	liche	s (T	on							est	.)	68,537	75,465
			9						-	Sur			100,000	100,000

c) Gesamtanalyse des Feinbodens

Bestandteile	Ton Eisenhaltige Ton aus 2,5 dm aus 10 dm in Prozenten		
1. Aufschließung			
a) mit kohlensaurem Natronkali	I The state of the		
Kieselsäure	63,951	55,371	
Tonerde*)	11,722	14,002	
Eisenoxyd	5,841	10,533	
Kalkerde	0,858	0,897	
Magnesia	1,569	2,150	
b) mit Flußsäure	1,000	7,100	
	1 004	1,916	
Kali	1,994 0,822	0,804	
Natron	0,022	0,004	
2. Einzelbestimmungen			
Schwefelsäure	nicht best.	nicht best.	
Phosphorsäure	0,130	0,356	
Kohlensäure (gewichtsanalytisch)	0,057	0,036	
Humus (nach Knop)	2,366	0,885	
Stickstoff (nach Will-Varrentrapp)	0,158	0,065	
Hygroskopisches Wasser bei 1050 Cels	5,400	6,411	
Glühverlust ausschl. Kohlensäure, hygrosk. Wasser,		and the same of th	
Humus und Stickstoff	4,683	6,509	
Summa	99,551	99,935	
*) Entspräche wasserhaltigem Ton	29,650	35,417	

Tonboden des Schlickes

Südlich von Herrenwiese bei Klein-Neuendorf (Blatt Neu-Trebbin) R. Gans

I Mechanische und physikalische Untersuchung a) Körnung

						75 74
Tiefe der Ent- nahme dm	Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Kies (Grand) über 2mm	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Summa
0-2		Humoser Ton	нт	0,0	14,2 85,8	100,0
		(Ackerkrume)			0,4 1,0 3,8 4,8 4,2 20,8 65,0	
2-3	ast	Ton	_	0,0	2,4 97,6	100,0
2-0	ast	(Untergrund)		The state of	0,0 0,2 0,4 0,6 1,2 12,8 84,8	
3-11		Eisen- haltiger		0,0	5,2 94,8	100,0
0-11		Ton (Tieferer Untergrund)	ET		0,0 0,1 0,1 1,0 4,0 15,6 79,2	

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung der Schicht	Tiefe der Ent- nahme	100 g F (unter	hmefähigk einboden r 2 ^{mm}) nehmen au	Wasserhaltende Kraf nach zwei Bestimmungen 100 ccm 100 g Feinboden (unter 2mm halten Wasser Volum- prozente Gewichts- prozente			
	dm	cem	g	eem	g	ccm	g
Humoser Ton .	1	127,4	0,1600	129,0	0,1619	49,5	36,1
Ton	3	146,5	0,1840	146,8	0,1844	49,5	37,6
Eisenhaltiger Ton	11	138,5	0,1740	138,7	0,1742	51,7	39,3

II Chemische Analyse a) Tonbestimmung

Aufschließung der bei 110° C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

Bestandteile	Humoser Ton aus 1 dm in Prozenten des Schlämmprod. Gesamtbodens		Ton aus 3 dm in Prozenten des Schlämmprod. Gesamtbodens	
Tonerde*)	13,889	11,917	14,427	14,081
	6,329	5,430	7,156	6,984
Summa *) Entspräche wasserhaltigem Tou	20,218	17,347	21,583	21,065
	35,132	30,143	36,492	35,616

b) Gesamtanalyse des Feinbodens

Bestandteile	Ton aus 3 dn in Prozenten	
1. Aufschließung		
a) mit kohlensaurem Natronkali		
Kieselsäure	55,951	
Tonerde*)	14,494	
Eisenoxyd	7,076	
Kalkerde	1,315	
Magnesia	1,665	
b) mit Flußsäure		
Kali	2,016	
Natron	1,516	
2. Einzelbestimmungen	PRINCE SHAPE	
Schwefelsäure		
Phosphorsäure (nach Finkener)	0,306	
Kohlensäure (gewichtsanalytisch)	0,077	
Humus (nach Knop)	2,119	
Stickstoff (nach Will-Varrentrapp)	0,191	
Hygroskopisches Wasser bei 105° Cels	6,705	
Glühverlust ausschl. Kohlensäure, hygroskop. Wasser,		
Humus und Stickstoff	6,903	
Summa	100,334	
*) Entspräche wasserhaltigem Ton	36,661	

c) Nährstoffbestimmung

Bestandteile	Humoser Ton aus 1 dm in Pro	Ton aus 3 dm zenten
1. Auszug mit konzentrierter kochender Salzsäure		
bei einstündiger Einwirkung		100
Tonerde	6,192	7,718
Eisenoxyd	4,586	5,184
Kalkerde	0,994	1,174
	0,758	0,991
Magnesia	0,432	0,427
Kali	0,415	0,341
Natron	0,130	0,145
Kieselsäure		
Schwefelsäure	0,046	0,044
Phosphorsäure	0,288	0,144
2. Einzelbestimmungen	The state of the s	Maria Santa
Kohlensäure (gewichtsanalytisch)	0,229	0.077
Humus (nach Knop)	4,694	2,119
Humus (nach Khop)	0,337	0,191
Stickstoff (nach Will-Varrentrapp)	5,160	6,705
Hygroskopisches Wasser bei 1050	0,100	0,100
Glühverlust (ausschl. Kohlensäure, hygroskop. Wasser,	E 000	6,908
Humus und Stickstoff)	5,808	
In Salzsäure Unlösliches (Ton, Sand und Nichtbest.)	69,931	67,837
Summa	100,000	100,000

Tonboden des Schlickes

Wiese in der Mitte zwischen Horst und Kienwerder, etwa 200 Schritt nördlich des Weges
(Blatt Neu-Trebbin)

R. GANS

I Mechanische und physikalische Untersuchung a) Körnung

Tiefe der Ent-	gnost.	Bodenart	ronom.	Kies (Grand) Sand Tonha Thei		eile g
nahme dm			Agronom. Bezeichnun	über 2mm	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	unter 0,01mm
0-1	ast	Schlick	ЙТ	0,0	2,5 97	5 100,0
		(Ackerkrume)		Months of		

b) Aufnahmefähigkeit der Ackerkrume für Stickstoff

nach Knop

100 g Feinboden (unter 2mm) nehmen auf: 135,7 ccm = 0,1704 Stickstoff

100 g Feinerde (unter 0.5mm) " ": 135,8 ccm = 0.1706

a) Tonbestimmung

Aufschließung des Feinbodens der bei 110° C. getrockneten tonhaltigen Teile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

Bestandteile	Ackerkrume in Prozenten des		
	Schlämm- produkts	Gesammt- bodens	
Tonerde*)	11,575	11,286	
Eisenoxyd	6,208	6,053	
Summa	17,783	17,339	
*) Entspräche wasserhaltigem Ton	29,278	28,546	

b) Humusbestimmung

nach Knop

Humusgehalt im Feinboden (unter 2mm) . . . 21,865 pCt

c) Aschenbestimmung

Total History Comments of the	In Prozenter
Nach der ersten Bestimmung	57,8
" " zweiten "	58,0
im Mittel	57,9

Tonboden des Schlickes

1,6 km nordwestlich vom Bahnhof Neu-Trebbin, südlich der Eisenbahn (Blatt Neu-Trebbin)

R. GANS

I Mechanische und physikalische Untersuchung a) Körnung

Tiefe der Ent- nahme	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	$\begin{array}{c c} S~a~n~d\\ \hline 2- & 1- & 0.5- & 0.2- & 0.1- \\ 1^{mm} & 0.5^{mm} & 0.1^{mm} & 0.05^{mm} \end{array}$	Tonhaltige Teile Staub Feinstes 0,05— unter 0,01 ^{mm} 0,01 ^{mm}	Summa
0-1	ast	Schlick	ĤТ	0,0	7,0	93,0	100,0
0-1	ast	(Ackerkrume)					

b) Aufnahmefähigkeit der Ackerkrume für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung der Schicht	'Tiefe der Ent- nahme	100 g F (unter	hmefähigke einboden 2 ^{mm})	100 g l	Feinerde 0,5 ^{mm})	Wasserhaltende Kraft nach zwei Bestimmungen 100 ccm 100 g Feinboden (unter2mm) halten Wasser Volum- Gewichts-	
	dm	cem	g	cem	g	prozente	prozente
Ackerkrume	-	153,0	0,1922	154,0	0,1934	54,3	41,3

a) Tonbestimmung

Aufschließung der bei 110° C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

	Bestandteile	Acker in Proze	
AND SECTION		Schlämm- produkts	Gesamt
		14,709 7,229	13,679 6,722
	Summa	21,938	20,401
*) Entspräche	wasserhaltigem Ton	37,205	34,601

b) Humusbestimmung

	In Prozenten
Humusgehalt im Feinboden (unter 2mm)	7,806

Tonboden des Schlickes

Zwischen Vorwerk Herrnhof und Vorwerk Königshof (Blatt Neu-Trebbin)*
R. Gans

I Mechanische und physikalische Untersuchung

a)	Körnung						
	Sand						

Tiefe der Ent- nahme dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) Sand Tonk (Grand) Uber 2- 1- 0,5- 0,2- 0,1- 0,05- 0,05- 0,01mm			Summa
0-1	200	Schlick	н́⊛т	0,0	60,2	39,8	100,0
0-1	ase	(Ackerkrume)		201.53			

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung	Tiefe der	100 g F	hmefähigk einboden	Wasserhaltende Kraft nach zwei Bestimmungen 100 ccm 100 g			
der Schicht	Ent- nahme		(unter 2 ^{mm}) (unter 0,5 ^{mm}) nehmen auf Stickstoff				(unter2mm) Wasser Gewichts- prozente
	dm	eem	g	eem	g	eem	g
Ackerkrume .	0-1	71,5	0,0898	72,1	0,0906	37,8	26,1

a) Tonbestimmung

Aufschließung der bei 110°C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220°C. und sechsstündiger Einwirkung

Bestandteile		Ackerkrume in Prozenten des		
	Schlämm- produkts	Gesamt- bodens		
Tonerde*)	11,344 7,907	4,515 3,147		
Summa	19,251	7,662		
*) Entsprüche wasserhaltigem Ton	28,694	11,420		

b) Humusbestimmung

A CHARLES ON THE OWNER OF THE CO.	In Prozenten
Humusgehalt im Feinboden (unter 2mm)	2,125

Tonboden des Schlickes

Am Wege von Alt- nach Neu-Rüdnitz, 17 km südlich der Fähre (Blatt Zehden)
R. Gans

1 Mechanische und physikalische Untersuchung
a) Körnung

Tiefe der	gnost.		om.	Kies (Grand)	Sand Tonhaltige Teile	na.
Ent- nahme dm	Geogn	Bodenart	Agronom. Bezeichnung		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sur
	OTES I	Schlick		0,0	9,8 90,2	100,0
0-1	ast	(Ackerkrume)	нт		Marie Company	

b) Aufnahmefähigkeit der Ackerkrume für Stickstoff nach Knop

100 g Feinboden (unter 2^{mm}) nehmen auf: 121,7 ccm = 0,1528 g Stickstoff 100 g Feinerde (unter $0,5^{mm}$) " : 121,9 ccm = 0,1531 g "

a) Tonbestimmung

Aufschließung der bei 110° C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäuro (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

Bestandteile	Acker	
	Schlämm- produkts	
Tonerde*)	12,839	11,581
Eisenoxyd	6,726	6,067
Summa	19,565	17,648
*) Entspräche wasserhaltigem Ton	32,475	29,292

b) Humusbestimmung

Security 2 and the second	In Prozenten
Humusgehalt im Feinboden (unter 2mm)	3,268

Tonboden de's Schlickes
Nördlich von Neu-Rüdnitz (Blatt Zehden)
R. Gans

I Mechanische und physikalische Untersuchung
a) Körnung

Tiefe der Ent- nahme dm	Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2— 1 ^{mm}	1— 0,5 ^{mm}	S a n	0,2—	0,1— 0,05mm	Staub	reile Feinstes unter 0,01 ^{mm}	Summa
1	Sandiger Ton ST			0,0			21,0)		71	100,0	
	100	(Ackerkrume)	•		0,2	1,6	5,6	6,8	6,8	24,8	54,2	
3	ðst	Eisen- schüssiger	Eisen- schüssiger		0,0		9,6				90	100,0
0	ost	Ton (Untergrund)	ET		0,0	0,2	1,0	3,2	5,2	29,0	61,4	
10		Eisen- schüssiger		0,0			3,5			96	3,5	100,0
10		Ton (Tieferer Untergrund)		945	0,0	0,1	0,2	0,8	2,4	26,4	70,1	

b) Aufnahmefähigkeit für Stickstoff nach Knop

Bestandteile	Acker	krume	Unter	grund	Tieferer Untergrund	
	cem	g	eem	g	cem	g
100 g Feinboden (unter 2mm) nehmen auf	103,5	0,1300	117,8	0,1480	121,0	0,1520
100 g Feinerde (unter 0,5mm) " "	105,7	0,1327	118,1	0,1483	121,0	0,1520

a) Nährstoff bestimmung

Bestandteile	Auf lufttrockne Feinboden berech Acker- Unter krume grun in Prozenten	
1. Auszug mit konzentrierter kochender Salzsäure bei einstündiger Einwirkung		
	4,259	5,314
Tonerde	4,482	5,170
Vallenda	0,544	0,634
Kalkerde	0,786	0,918
Magnesia	0,259	0,341
Kall	0,078	0,092
Schwefelsäure	0,032	0,047
Phosphorsäure	0,346	0,396
2. Einzelbestimmungen		
Kohlensäure (gewichtsanalytisch)	0,113	0,085
Konlensaure (gewichtsanaryusen)	3,005	2,284
Humus (nach Knop)	0,227	0,178
Stickstoff (nach Kjefdahl)	3,530	4,252
Hygroskop. Wasser bei 1050. Glühverlust ausschl. Kohlensäure, hygrosk. Wasser, Humus und Stickstoff.	4,264	4,802
In Salzsäure Unlösliches (Ton, Sand und Nicht-		
bestimmtes)	78,075	75,487
Summa	100,000	100,000

b) Tonbestimmung

Aufschließung der bei 110° C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

Bestandteile	Ackerkrume Untergrund Tieferer Untergrund in Prozenten des Feinbodens			
Tonerde*)	9,865	11,664	13,542	
	5,472	5,715	6,686	
Summa *) Entspräche wasserhaltigem Ton	14,837	17,879	20,228	
	23,687	29,503	34,253	

Tonboden des Schlickes

0,4 km südlich von Neu Rüdnitz, westlich am Wege nach Alt-Retz (Blatt Neu-Lewin)
R. Gans

I Mechanische und physikalische Untersuchung a) Körnung

Tiefe der Ent	legonost. zeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	Sand Tonhaltige Teile	ma
Ent- nahme dm	Gego Bezeic				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Summa
0-1	ast	Schlick	0,0	8,2 91,8	100,0	
	11.01	(Ackerkrume)				0.000

b) Aufnahmefähigkeit der Ackerkrume für Stickstoff nach Knop

100 g Feinboden (unter 2^{mm}) nehmen auf: 128,2 ccm = 0,1610 g Stickstoff 100 g Feinerde (unter 0.5^{mm}) " : 129,8 ccm = 0,1630 g "

a) Tonbestimmung

Aufschließung der bei 110° C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

Bestandteile	Ackerkrume in Prozenten des		
	Schlämm- produkts	Gesamt- bodens	
Tonerde*)	14,233 6,962	13,066 6,391	
Summa	21,195	19,457	
*) Entspräche wasserhaltigem Ton	36,001	33,049	

b) Humusbestimmung

milt ringsin Timesant in the	In Prozenten
Humusgehalt im Feinboden (unter 2mm)	4,166

Tonboden des Schlickes

Südwestlich von Heinrichsdorf, 200 Schritt vom Dorfe (Blatt Neu-Lewin)

R. GANS

I Mechanische und physikalische Untersuchung

a) Körnung

Tiefe der Ent- nahme	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	Sand 2- 1 0,5- 0,2- 0,1- 1mm 0,5mm 0,2mm 0,1mm 0,05mm	Tonhaltige Teile Staub Feinstes 0,05— unter 0,01 ^{mm} 0,01 ^{mm}	Summa
0—1	ast	Schlick (Ackerkrume)	й ©Т	0,0	8,4	91,6	100,0

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung der Schicht	Tiefe der Ent- nahme	100 g Fo	ahmefähigk einboden · 2 ^{mm})	Wasserhaltende Kraft nach zwei Bestimmungen 100 com 100 g Feinboden (unter2mm) halten Wasser Volum- Volum- prozente prozente			
	dm	ccm	g	ccm	g	com	g
Ackerkrume	-	115.1	0,1446	116,3	0,1461	51,1	39,6

a) Tonbestimmung

Aufschließung der bei 110° C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

Bestandteile	1 11 11 11 11 11 11 11 11 11 11 11 11 1	Ackerkrumc in Prozenten des	
	Schlämm- produkts	Gesamt	
Tonerde*)	12,568 6,583	11,512 6,030	
Summa	19,151	17,542	
*) Entspräche wasserhaltigem Ton	31,790	29,120	

b) Humusbestimmung

W. Laddy Mig. Ed. 2 T. Mennes	In Prozenten
Humusgehalt im Feinboden (unter 2mm)	2,841

Tonboden des Schlickes

Wiese südöstlich von Thöringswerder (Blatt Neu-Lewin)

R. GANS

I Mechanische und physikalische Untersuchung

a) Körnung

Tiefe der Ent- nahme	Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Kies (Grand) über 2mm	Sand 2- 1- 0,5- 0,2- 0,1- 1 mm 0,5 mm 0,2 mm 0,1 mm 0,05 mm	Tonhaltige Teile Staub Feinstes 0,05— 0,01mm 0,01mm	Summa
0-1	ast	Schlick	н⊛т	0,0	7,0	93,0	100,0
0-1	a su	(Ackerkrume)	101				

b) Aufnahmefähigkeit der Ackerkrume für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung	Tiefe der	100 g F	hmefähigk einboden	Wasserhaltende Kraft nach zwei Bestimmunger 100 ccm 100 g			
der Schicht	Ent- nahme		r ^{2mm}) nehmen au	Feinboden (unter2mn halten Wasser Volum- prozente prozente	Wasser		
	dm	cem	g	cem	g	ecm	g
Ackerkrume .	0-1	144,8	0,1812	144,8	0,1819	64,1	49,9

a) Tonbestimmung

Aufschließung der bei 110° C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

Bestandteile		Ackerkrume in Prozenten de Schlämm- Gesan produkts boden		
Tonerde*) ,		14,516 5,907	18,500 5,494	
	Summa	20,423	18,994	
*) Entsprüche wasserhaltigem Ton		36,717	34,147	

b) Humusbestimmung

And the second s	In Prozenten
Humusgehalt im Feinboden (unter 2mm)	10,081

Lehmboden des Schlickes

Güstebieser Lose, nahe dem Ostrande des Blattes, 2 km südlich der Oder (Blatt Neu-Lewin)

R. GANS

I Mechanische und physikalische Untersuchung a) Körnung

Tiefe der Ent- nahme dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	Sand 2- 1- 0,5- 0,2- 0,1- 0,05mm	Tonhaltige Teile Staub Feinstes 0,05 - unter 0,01mm 0,01mm	Su
0—1	a st	Schlick (Ackerkrume)	HSI IZH	0,0	44,2	55,8	100,0
	4.00			E NOTE:			

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung der Schicht	Tiefe der Ent- nahme	100 g Fe	ahmefähigleinboden 2mm) nehmen au	100 g 1	Feinerde 0,5 ^{mm})	nach zwei E 100 ccm Feinboden	haltende raft destimmungen 100 g (unter2mm) Wasser Gewichts-				
	dm	ccm	g	cem	1 g	prozente prozen					
Ackerkrume	0-1	104,8	0.1310	106,4	0,1837	45,6	30,9				

a) Tonbestimmuug

Aufschließung der bei 110° C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

Bestandteile	Ackerkrume in Prozenten des		
Bestandtelle	Schlämm- produkts	Gesamt	
Tonerde*)	13,386 6,041	7,469 3,371	
Summa	19,427	10,840	
*) Entspräche wasserhaltigem Ton	33,859	18,898	

b) Humusbestimmung

Manager (1984) (1984)	In Prozenten
Humusgehalt im Feinboden (unter 2mm)	2,961

Lehmboden des Schlickes

Güstebieser Loose, nahe dem Ostrande des Blattes, 2 km südlich der Oder (Blatt Neu-Lewin)

R. GANS

I Mechanische und physikalische Untersuchung

a) Körnung

Tiefe der Ent- nahme dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	S a n d 2- 1- 0,5- 0,2- 0,1- 1,1- 0,05mm	Tonhaltige Teile Staub Feinstes 0,05— 0,01mm 0,01mm	Summa.
	Mil	Schlick	v	0,0	60,2	39,8	100,0
01	ast	sf (Ackerkrume)	ĦSL	ng de			

b) Aufnahmefähigkeit der Ackerkrume für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung der Schicht	Tiefe der - Ent-	Aufna 100 g Fe (unter		Wasserhaltende Kraft nach zwei Bestimmungen 100 ccm 100 g Feinboden (unter2mm)						
	nahme	1	nehmen au	f Sticksto	ff	halten Wasser Volum- Gewichts-				
	dm	cem	g	cem	g	prozente prozente				
Ackerkrume .	0—1	81,2	0,1020	83,9	0,1054	38,7	26,7			

a) Tonbestimmung

Aufschließung der bei 110° C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

Bestandteile					Ackerkrume in Prozenten des		
					Sehlämm- produkts	Gesamt- bodens	
Tonerde*)					13,832	5,505	
Eisenoxyd					6,743	2,684	
		Su	mn	na	20,575	8,189	
*) Entspräche wasserhaltigem Ton					34,987	13,925	

b) Humusbestimmung

Company of the Compan	In Prozenten
Humusgehalt im Feinboden (unter 2mm)	2,477

Tonboden des Schlickes Südwestlich von Kerstenbruch (Blatt Neu-Lewin)

R. GANS

I Mechanische und physikalische Untersuchung a) Körnung

Tiefe der	gnost.		gronom.	Kies (Grand)	Sand Tonhaltige Teile Staub Feinstes						ıma
Ent- nahme dm	Geognost. Bezeichnur	Bodenart	Agronom. Bezeichnur	über 2mm	2— 1— 1 ^{mm} 0,5 ^{mm}	0,5— 0,2 ^{mm}	0,2 – 0,1mm	0,1— 0,05 ^{mm}	0,05— 0,01 ^{mm}	unter 0,01mm	Summa
		G-LV-L		6,9	6,0			87,	1		100,0
0—1	sť	Schlick (Ackerkrume)	НТ								

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

	Tiefe	Aufna	Wasserhaltende Kraft nach zwei Bestimmungen				
Bezeichnung der Schicht	der Ent- nahme	(unter	einboden 2mm) nehmen au	(unter	Feinerde 0,5 ^{mm})	100 ccm 100 g Feinboden (unter2mm halten Wasser Volum- prozente prozente	
The state of the state of	dm	cem	g	eem	g	com	g
Ackerkrume	-	106,8	0,1342	114,2	0,1434	52,7	42,9

II Chemische Analyse

Humusbestimmung

nach Knop

Humusgehalt im Feinboden (unter 2mm): 3,921 pCt.

Tonboden des Schlickes

Südöstlich des Dorfes Neu-Rüdnitz, östlich des Bahnhofes (Blatt Neu-Lewin)
R. Gans

I Mechanische und physikalische Untersuchung a) Körnung

Tiefe der	nost.		gronom.	Kies (Grand)		Sand	Tonhaltige Teile	ma
Ent- nahme dm	200	Bodenart	A gronom Bezeichnur	über 2mm	2- 1- 1mm 0,5mm	0,5— 0,2— 0,1— 0,2 ^{mm} 0,1 ^{mm} 0,05 ^{mm}	Staub Feinstes 0,05— unter 0,01 ^{mm} 0,01 ^{mm}	Summa
0—1		Schlick	йт	11,9	4,6	83,		100,0
0-1	St	(Ackerkrume)						

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Quality was	Tiefe	Aufna	Wasserhaltende Kraft				
Bezeichnung der Schicht	der Ent- nahme	(unter	100 g Feinboden (unter 2mm) nehmen auf		Feinerde 0,5 ^{mm})	Feinboden (unter2- halten Wasser Volum- prozente prozen	
	dm	cem	g	eem	g	cem	prozente
Ackerkrume	0-1	117,8	0,1480	124,3	0,1561	57,0	46,7

II Chemische Analyse

Kalkbestimmung

nach Knop

Humusgehalt im Feinboden (unter 2mm) = 7,236 pCt.

Tonboden des Schlickes Nordöstlich von Karlshof (Blatt Neu-Lewin) R. Gans

I Mechanische und physikalische Untersuchung

a) Körnung

Tiefe der	gnost.		om.	Kies (Grand)		Sand		Tonha	ile	ıma
Ent- nahme dm	0000	Bodenart	Agronom. Bezeichnung	0.0000000000000000000000000000000000000	2- 1- 1mm 0,5mm	0,5— 0,2- 0,2mm 0,1m	0,1 — 0,05mm	Staub I 0,05— 0,01 ^{mm}	unter 0,01mm	Summa
		Schlick		0,2	4,8	4,8 95,0				
0-1	sť	(Ackerkrume)	нт							

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

	Tiefe	Aufna	hmefähigk	ickstoff	Wasserhaltende Kraft		
Bezeichnung der Schicht	der Ent- nahme dm	100 g Fe (unter		(unter	'einerde 0,5 ^{mm})	100 ccm Feinboden halten Volum- prozente ccm	100 g (unter2mm) Wasser Gewichts- prozente g
Ackerkrume .	0-1	105,6	0,1326	110,9	0,1393	49,8	87,8

II Chemische Analyse

Humusbestimmung

nach Knop

Humusgehalt im Feinboden (unter 2mm) . . . 3,337 pCt.

Tonboden des Schlickes Zäckericker Lose (Blatt Neu-Lewin) R. Gans

I Mechanische und physikalische Untersuchung

a) Körnung

Tiefe der Ent- nahme dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2— 1— 1 ^{mm} 0,5 ^{mm}	Sand 0.5- 0.2- 0.1- 0.05mm	Tonhaltige Teile Staub Feinstes 0,05— 0,01mm 0,01mm	Summa
		Schlick		0,3	5,6	94,	ı	100,0
0-1	st	(Ackerkrume)	нт					

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

And the second	Tiefe	Aufna	Wasserhaltende Kraft				
der Schicht	der Ent- nahme	Ent- (unter 2mm)		(unter	Feinerde 0,5 ^{mm})	Feinboden (unter 2mm halten Wasser Volumprozente Gewichts- prozente	
	dm	cem	g	cem	g	cem	g
Ackerkrume	0-1	101,6	0,1276	107,6	0,1352	51,7	40,9

II Chemische Analyse

Humusbestimmung

nach Knop

Humusgehalt im Feinboden (unter 2mm): 3,723 pCt.

Tonboden des Schlickes Nordöstlich von Kerstenbruch (Blatt Neu-Lewin)

R. GANS

I Mechanische und physikalische Untersuchung

a) Körnung

Tiefe der Ent- nahme	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2- 1- 1mm 0,5mm	Sand 0,5- 0,2- 0,1- 0,05mm	Tonhaltige Teile Staub Feinstes 0,05— unter 0,01mm 0,01mm	Summa
0-1	st	Schlick (Ackerkrume)	ΉΤ	0,5	5,6	93,		100,0

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Pezeichnung der Schicht	Tiefe der Ent- nahme	100 g Fe (unter	hmefähigke einboden 2 ^{mm})	100 g l (unter	Feinerde 0,5 ^{mm})	100 ccm Feinboden	tende Kraft 100 g (unter2mm) Wasser Gewichts- prozente
	dm	cem	g	cem	g	cem	g
Ackerkrume	0-1	- 108,1	0,1358	114,6	0,1439	51,6	40,3

II Chemische Analyse

Hnmusbestimmung

nach Knop

Humusgehalt im Feinboden (unter 2mm): 2,461 pCt.

Tonboden des Schlickes Nordwestlich von Neu-Rüdnitz (Blatt Neu-Lewin) R. Gans

I Mechanische und physikalische Untersuchung
a) Körnung

Tiefe der Ent- nahme	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2 - 1— 1 ^{mm} 0,5 ^{mm}	Sand 0,5-0,2- 0,2mm 0,1mm	0,1— 0,05 ^{mm}	T Staub	haltige eile Feinstes unter 0,01 mm	Summa
0-1	st	Schlick (Ackerkrume)	нт	3,0	5)2		91,8			100,0

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung der Schicht	Tiefe der Ent- nahme	100 g Fe		100 g l (unter	Feinerde 0,5mm)	100 cem Feinboden	Feinboden (unter2mm) halten Wasser Volum- Gewichts-	
	dm	cem	g	eem	g	cem	g	
ckerkrume	0-1	127,4	0,1600	134,6	0,1691	55,5	44,7	

II Chemische Analyse

Humusbestimmung

nach Knop

Humusgehalt im Feinboden (uuter 2mm): 4,418 pCt.

Tonboden des Schlickes Nördlich von Neu-Barnim (Blatt Neu-Lewin) R. Gans

I Mechanische und physikalische Untersuchung
a) Körnung

Tiefe der	gnost.		onom.	Kies (Grand)		Sand		Т	naltige eile	ma
Ent- nahme	Geogn Bezeich	Bodenart	Agronom. Bezeichnun	über 2mm	2- 1- 1 ^{mm} 0,5 ^{mm}	0,5— 0,2— 0,2mm 0,1mm	0,1 - 0,05mm	0.05-		Summa
0-1	sť	Schlick	н вт	0,5	8,8		90,7			100,0
0-1	St	(Ackerkrume)	пот							

h) Aufnahmefähigkeit für Stickstoff (nach Knop und c) Wasserhaltende Kraft

Bezeichnung der	Tiefe der Ent-	100 g F (unter	ahmefähigke einboden r 2 ^{mm})	Wasserhaltende Kraft 100 ccm 100 g Feinboden (unter2mm) halten Wasser			
Schicht	nahme		nehmen au	f Sticksto	ff	Volum- prozente	Gewichts- prozente
	dm	ccm	g	cem	g	cem	g
Ackerkrume	0-1	67,4	0,0846	73,9	0,0928	38,7	25,4

Il Chemische Analyse

Humusbestimmung

nach Knop

Humusgehalt im Feinboden (unter 2mm): 1,799 pCt.

Tonboden des Schlickes Östlich von Thöringswerder (Blatt Neu-Lewin) R. Gans

I Mechanische und physikalische Untersuchung

a) Körnung

Tiefe der	nost.		gronom.	Kies	Sand Tonhaltige Teile						
Ent- nahme dm	00.0	Bodenart	Agronom. Bezeichnur	(Grand) über 2mm	2- 1- 1 ^{mm} 0,5 ^{mm}	0,5 — 0,2 — 0,1 — 0,05 mm	Staub Feinstes 0,05— 0,01 ^{mm} 0,01 ^{mm}	Summa			
		Schlick		0,2	10,2	89,6		100,0			
0-1	st	(Ackerkrume)	ĤL								

b) Aufnahmefähigkeit für Stickstoff (nach Knop) und c) Wasserhaltende Kraft

Bezeichnung der	Tiefe der Ent-	100 g Fe	hmefähigke einboden 2 ^{mm})	Wasserhaltende Kraft 100 ccm 100 g Feinboden (unter2mm) halten Wasser			
Schicht	nahme	1	nehmen au	Volum- prozente	Gewichts- prozente		
	dm	cem	g	cem	g	cem	g
Ackerkrume	0-1	103,8	0,1304	115,6	0,1452	52,8	40,9

II Chemische Analyse

Humusbestimmung

nach Knop

Humusgehalt im Feinboden (unter 2mm) 9,345 pCt.

Tonboden des Schlickes

Nordwestlich der Zollbrücke am Oderteiche (Blatt Neu-Lewin)

R. Gans

I Mechanische und Physikalische Untersuchung

a) Körnung Agronom. Bezeichnung Tonhaltige Teile Tiefe Kies Sand der (Grand) Staub Feinstes 0,05— unter 0,01mm 0,01mm Bodenart Ent-über nahme 2mm dm 100,0 97,1 0,1 2,8 Schlick HŠT 0 - 1(Ackerkrume)

	Tiefe	Aufna	hmefähigk	ickstoff	Wasserhaltende Kraft		
Bezeichnung der Schicht	der Ent- nahme	(unte	einboden r 2 ^{mm}) nehmen a u	(unter	Feinerde 0,5mm)	Feinboden halten Volum- prozente	100 g (unter2mm) Wasser Gewichts- prozente
	dm	eem	g	com	g	com	g
Ackerkrume .	0-1	83,9	0,1054	86,3	0,1084	44,5	31,7

Humusbestimmung

nach Knop

	in Prozenten
Humusgehalt im Feinboden (unter 2mm)	2,847

Lehmboden des Schlickes in dünner Decke über Sand Südlich von Sietzing an der Straße nach Kienwerder (Blatt Neu-Trebbin) R. GANS

I Mechanische und physikalische Untersuchung
a) Körnung

Tiefe der Ent- nahme (Mäch- tigkeit) dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2— 1 ^{mm}			0,2—	0,1— 0,05mm	Staub 0,05—		Summa
1				0,1			40,5				69,8	100,1
(0-2)		Humoser			0,4	7,4	19,6	8,8	4,0	11,8	48,0	
	ast	Lehm (Ackerkrume)	HL	0,1			45,0	,	201		55,0	100,1
(2-4)					0,6	8,6	21,6	9,6	4,6	9,0	46,0	
10 (4-12)		Schwach grandiger Sand (Untergrund)		0,6			97,5	2	the co		2,2	100,0
	as		ĞS		3,6	35,4	54,4	3,6	0,2	0,5	1,7	

	Tiefe	Aufna	hmefähigke	Wasserhaltende Kraft				
Bezeichnung	der Ent-	100 g Fe (unter			Feinerde 0,5mm)	100 ccm 100 g Feinboden (unter 2mm halten Wasser		
Schicht	nahme	1	nehmen au	Volum- prozente	Gewichts- prozente			
	dm	cem	g	ccm	g	eem	g	
Humoser Lehm	1	108,8	0,1366	118,2	0,1485	42,6	31,1	
Humoser Lehm	3	108,8	0,1366	120,9	0,1519	39,0	27,3	
Schwach gran- diger Sand	10	4,3	0,0054	6, 1	0,0077	31,2	18,7	

a) Nährstoffbestimmung

Bestandteile	Humos	er Lehm	Schwach kiesiger Sand
		aus 3 dm n Prozente	aus 10 dm
1. Auszug mit konzentrierter kochender Salzsäure bei einstündiger Einwirkung			
Tonerde	4,640	4,216	0,302
Eisenoxyd	2,556	2,430	0,252
Kalkerde	0,857	0,763	0,046
Magnesia	0,592	0,546	0,121
Kali	0,282	0,222	0,032
Natron	0,304	0,227	0,024
Kieselsäure	0,156	0,148	0,024
Schwefelsäure	0,035	0,029	0,006
Phosphorsäure	0,140	0,108	0,009
2. Einzelbestimmungen		Maria III	
Kohlensäure (gewichtsanalytisch)	0,068	0,041	0,013
Humus (nach Knop)	4,316	3,128	0,080
Stickstoff (nach Will-Varrentrapp)	0,280	0,217	0,002
Hygroskopisches Wasser bei 1050	4,540	3,935	0,195
Glühverlust ausschl. Kohlensäure, hygroskopisches Wasser, Humus und Stickstoff	4,430	4,086	0,375
In Salzsäure Unlösliches (Ton, Sand und Nichtbestimmtes)	76,804	79,904	98,519
Summa	100,000	100,000	100,000

b) Tonbestimmung

Aufschließung der bei 110°C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220°C. und sechsstündiger Einwirkung

Bestandteile	Humose aus in Proze Schlämm- produkts	dm nten des Gesamt-
Tonerde*)	13,007 5,092	7,778 3,045
Summa	18,099	10,823
*) Entspräche wasserhaltigem Ton	82,990	19,674

Sandboden des Talsandes Aufschluß nordöstlich Karlsdorf (Blatt Neu-Trebbin) R. Gans

I Mechanische und physikalische Untersuchung a) Körnung

Tiefe der Ent- nahme (Mäch- tigkeit) dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2— 1 ^{mm}		San 0,5— 0,2mm	0,2—		T		Summa
1 (0-2)		Schwach humoser Sand	нs	5,8	3,4	7,3	20,4		11,0	3,1	2,1	100,0
			12,3	246		84,2			3	,5	100,0	
3	∂a8				2,1	4,5	16,6	49,6	11,4	2,0	1,5	
	Sand S				97,8					2,2		100,0
15					1,4	6,2	22,8	55,1	11,8	0,9	1,3	

	Tiefe	Aufna	hmefähigk	Wasserhaltende Kraft nach zwei Bestimmungen			
Bezeichnung der Schicht	der Ent- nahme	(unter	einboden 2mm) nehmen au	(unter	Feinerde 0,5 ^{mm})	100 ccm Feinboder	100 g (unter2mm Wasser Gewichts- prozente
A CONTRACTOR OF THE PARTY OF TH	dm	eem	g	cem	g	eem	g
Schwach humoser Sand	1	10,4	0,0130	12,1	0,0152 0,0150	32,3 31,0	19,7 18,3
Sand Sand	3 15	11,0	0,0138 0,0126	11,9 10,8	0,0135	80,7	18,1

Nährstoffbestimmung

Bestandteile	The second second	Sand aus 3 dm exenten
Auszug mit konzentrierter kochender Salzsäure bei einstündiger Einwirkung		
Toperde	0,587	0,659
Eisenoxyd	0,558	0,644
Kalkerde	0,097	0,074
Magnesia	0,152	0,168
Kali	0,055	0,056
Natron	0,031	0,028
Kieselsäure	0,031	0,036
Schwefelsäure	0,013	0,011
Phosphorsäure (nach Finkener)	0,090	0,054
2. Einzelbestimmungen		
Kohlensäure (gewichtsanalytisch)	0,013	0,020
Humus (nach Knop)	0,902	0,146
Stickstoff (nach Will-Varrentrapp)	0,057	0,009
Hygroskopisches Wasser bei 1050	0,388	0,229
Glühverlust ausschl. Kohlensäure, hygroskop. Wasser, Humus und Stickstoff	0,682	0,547
In Salzsäure Unlösliches (Ton, Sand und Nichtbestimmtes)	96,344	97,319
Summa	100,000	100,000

Sandboden des Alluvialsandes Südlich von Klein-Barnim (Blatt Neu-Trebbin) R. Gans

I Mechanische und physikalische Untersuchung a) Körnung

Tiefe der Ent- nahme (Mäch- tigkeit) dm	Geognost. Bezeichnung	Gebirgsart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2— 1 ^{mm}	1— 0,5 ^{mm}		0,2—		T	raltige eile Feinstes unter 0,01 ^{mm}	Summa	
1 (0-2)	Humoser lehmiger Sand		lehmiger HSI				83,5			1	100,0		
(0 2)	Lysi.	(Ackerkrume)			4,2	42,3	30,0	5,3	1,4	4,4	11,4		
3	SOLD!	Schwach grandiger		**	1,5			90,5	•			7,6	100,0
(2-4)	as	Sand (Untergrund)	ĞS		4,4	51,4	31,2	3,2	0,7	1,7	5,9		
10	TO S	Grandiger		2,4			97,	ı	dealer of		0,5	100,0	
(4-14)	(4-14) (Tieferer		GS		10,2	62,6	23,6	0,5	0,2	0,2	0,3		

Bezeichnung der Schicht	Tiefe der Ent- nahme	100 g F (unte	hmefähigke einboden r 2 ^{mm})	100 g I (unter	Feinerde 0,5 ^{mm})	Wasserhaltende Kraft nach zwei Bestimmunge 100 ccm 100 g Feinboden (unter2m) halten Wasser Volum- Gewichts- prozente prozente		
	dm	cem	g	cem	g	cem	g	
Humoser lehmi- ger Sand	1	29,8	0,0874	55,2	0,0698	27,7	16,6	
Schwach gran- diger Sand Grandiger Sand	3 10	11,5 2,0	0,0144 0,0025	26,1 7,9	0,0327 0,0098	23,7 27,8	14,0 16,4	

Nährstoff bestimmung

Bestandteile	lehmiger Sand	Schwach grandiger Sand
addition to be a second to the	in Pr	ozenten
Auszug mit konzentrierter kochender Salzsäure bei einstündiger Einwirkung	theolo	
Tonerde	1,321	0,587
Eisenoxyd	0,970	0,529
Kalkerde	0,175	0,069
Magnesia	0,203	0,139
Kali	0,101	0,055
Natron	0,044	0,041
Kieselsäure	0,078	0,053
Schwefelsäure	0,032	0,006
Phosphorsäure	0,099	0,047
2. Einzelbestimmungen		
Kohlensäure (gewichtsanalytisch)	0,020	0,013
Humus (nach Knop)	2,359	0,604
Stickstoff (nach Will-Varrentrapp)	0,136	0,028
Hygroskop. Wasser bei 105° C	1,247	0,481
Glühverlust ausschl. Kohlensäure, hygroskop. Wasser, Humus und Stickstoff	1,430	0,662
In Salzsäure Unlösliches (Ton, Sand und Nichtbestimmtes)	91,785	96,686
Summa	100,000	100,000

Sandboden des Dünensandes Nordwestlich von Quappendorf (Blatt Neu-Trebbin) R. Gans

I Mechanische und physikalische Untersuchung a) Körnung

Tiefe der Ent- nahme (Mäch- tigkeit) dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2— 1mm	1— 0,5 ^{mm}	San 0,5— 0,2 ^{mm}	0,2-		Te		Summa
1		Sand		0,0			97,6	1		2	2,4	100,0
(0-2)	462.5	(Ackerkrume)			0,1	0,3	12,3	65,9	19,0	1,3	1,1	
		Sand	S	0,2			95,	3		4	1,5	100,0
3	D	(Untergrund)	0		0,1	0,5	14,4	56,1	24,2	2,9	1,6	
	3.4	Sand		0,1			94,	3			5,6	100,0
8	2111	(Tieferer Untergrund)			0,2	0,8	18,2	52,9	22,2	3,5	2,1	

Bezeichnung der Ent Schicht		100 g F	ahmefähigke einboden r 2 ^{mm})	100 g J (unter	Feinerde 0,5 ^{mm})	nach zwei E 100 ccm Feinboden	haltende raft lestimmungen 100 g (unter2 ^{mm}) Wasser Gewichts- prozente
	dm	cem	g	cem	g	eem	g
Sand	1	11,0	0,0138	11,1	0,0139	85,5	22,0
Sand	3	9,2	0,0116	9,8	0,0117	33,5	20,8
Sand	8	9,2	0,0116	9,8	0,0117	32,1	19,9

Nährstoff bestimmung

	Sa	and
Bestandteile	aus 1 dm	aus 3 dn
	in Pro	zenten
1. Auszug mit konzentrierter kochender Salzsäure		
bei einstündiger Einwirkung		
Tonerde	0,367	0,383
Eisenoxyd	0,326	0,353
Kalkerde	0,041	0,044
Magnesia	0,100	0,115
Kali	0,050	0,055
Natron	0,028	0,025
Kieselsäure	0,034	0,041
Schwefelsäure	0,008	0,010
Phosphorsäure	0,034	0,045
2. Einzelbestimmungen	1	
Kohlensäure (gewichtsanalytisch)	0,011	0,013
Humus (nach Knop)	0,437	0,208
Stickstoff (nach Will-Varrentrapp)	0,033	0,018
Hygroskopisches Wasser bei 1050	0,267	0,239
Glühverlust ausschl. Kohlensäure, hygroskop. Wasser,		
Humus und Stickstoff	0,404	0,399
In Salzsäure Unlösliches (Ton, Sand und Nichtbestimmtes)	97,860	98,052
Summa	100,000	100,000

Kalkboden des Wiesenkalkes

Zwischen Neu-Hardenberg und Vorwerk Bärwinkel (Blatt Neu-Trebbin)

R. GANS

I Mechanische und physikalische Untersuchung
a) Körnung

Tiefe der Ent- nahme (Mäch- tigkeit) dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2- 1mm	1— 0,5mm	San 0,5— 0,2mm	0.2—	0,1— 0,05 ^{mm}	T	naltige eile Feinstes unter 0,01 ^{mm}	Summa
1		Humoser sandiger	нѕк	2,0		7. 7.	54,6			4	3,4	100,0
(0-2)		Kalk (Ackerkrume)	IIOK		1,2	2,2	19,0	17,0	15,2	15,2	28,2	
2	08/ 187/	Schwach humoser	***	1,2		1	43,0			5	5,8	100,0
3 (2—5)	ak	Kalk (Untergrund)	ЙK		1,4	2,6	13,8	14,8	10,4	21,8	34,0	
10	CET	Kalk		0,2		X	60,4	1		3	39,4	100,0
(5-14)		(Tieferer Untergrund)	K		0,8	2,8	24,4	25,2	7,2	9,8	29,6	

Bezeichnung der Schicht	Tiefe der Ent-	100 g Fe		Wasserhaltende Kraft nach zwei Bestimmunger 100 ccm 100 g Feinboden (unter2mm halten Wasser Volum- Gewichts-			
0.500	dm	cem	g 1	eem	g	prozente cem	prozente g
Humoser sandi- ger Kalk	1	48,6	0,0610	49,5	0,0621	48,2	37,1
Schwach humo- ser Kalk Kalk	3 10	43,2 33,3	0,0542 0,0418	44,0 34,0	0,0553 0,0427	48,7 50,7	38,0 42,1

a) Nährstoffbestimmung

Bestandteile	Humoser sandiger Kalk	humoser Kalk	Kalk
	i	n Prozente	n
Auszug mit konzentrierter kochender Salzsäure bei einstündiger Einwirkung			
Tonerde	0,315	0,405	0,378
Eisenoxyd	1,548	1,107	0,972
Kalkerde	21,390	27,645	18,360
Magnesia	0,621	0,636	0,678
Kali	0,126	0,132	0,117
Natron	0,192	0,201	0,162
Kieselsäure	0,092	0,088	0,076
Schwefelsäure	0,231	0,246	0,132
Phosphorsäure	0,189	0,171	0,090
2. Einzelbestimmungen			
Kohlensäure*) (gewichtsanalytisch)	14,874	19,995	13,731
Humus (nach Knop)	5,601	4,797	0,765
Stickstoff (nach Will-Varrentrapp)	0,421	0,380	0,044
Hygroskopisches Wasser bei 105° Cels	2,868	2,115	0,740
Glühverlust ausschl. Kohlensäure, hygroskop. Wasser, Humus und Stickstoff	3,260	3,495	1,673
In Salzsäure Unlösliches (Ton, Sand und Nichtbestimmtes)	48,272	38,587	62,082
Summa	100,000	100,000	100,000
*) Entspräche 33,80 pCt. kohlensaurem Kalk			

b) Tonbestimmung

Aufschließung der bei 110° Cels. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° Cels. und sechsstündiger Einwirkung

Bestandteile	Humoser sandiger K aus 1 dm in Prozenten des		
Statement of the second second	Schlämm- produkts	Gesamt- bodens	
Tonerde*)	0,922 5,470	0,400 2,374	
Summa	6,392	2,774	
*) Entspräche wasserhaltigem Ton	2,332	1,012	

Radaunemergel

Waldkrume (0-0,5 m Tiefe)
Freienwalde (Blatt Freienwalde)
R. Gans

Chemische Analyse

Aufschließung der tonhaltigen Teile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220°C. und sechsstündiger Einwirkung.

	One of the last		Ве	st	a	n d	te	il	0						in Proze Schlämm- produkts	
Tonerde*).							16								0,926	0,154
Eisenoxyd			10								*				6,608	1,097
												Su	mr	na	7,534	1,251
*) Entspräche v	vas	ser	halti	igen	n T	on									2,342	0,389

Radaunemergel (0,5 m Tiefe) Chemische Analyso

Kalkbestimmung nach Scheibler

Kohlensaurer Kalk im Feinboden (unter 2mm):	In Prozenten
Nach der ersten Bestimmung	85,085
" " zweiten " · · · · · ·	85,314
im Mittel	85,200
Humusbestimmung (nach Knop)	
Humusgehalt im Feinboden (unter 2mm)	. 1,654 pCt. 1)
Phosphorsäurebestimmung (nach Finkm Phosphorsäuregehalt im Feinboden (unter 2mm) Eisenoxydgehalt und Tonerdegehalt einstündiges Kochen des Bodens mit Salzsäure (1 Eisenoxyd im Feinboden (unter 2mm).	0,129 pCt. ,15 spez. Gew.) . 2,698 pCt.
Tonerde " "	. 0,431 "
Roter Humus 0,681 Schwarzer Humus 0,978 Summa 1,654	pCt.

Radaunemergel Freienwalde¹) (Blatt Freienwalde) R. Gans

I Physikalische Untersuchung a) Aufnahmefähigkeit für Stickstoff (nach Knop) und b) Wasserhaltende Kraft

Bezeichnung der Schicht	Tiefe der Ent- nahme	100 g Fe		100 g I (unter	Feinerde 0,5mm)	Wasserhaltende Kraft nach zwei Bestimmunger 100 ccm 100 g Feinboden (unter2mm halten Wasser Volum- prozente Gewichts- prozente		
	dm	com	g	eem	g	eem	g	
Ackerkrume	10	26,19	0,0327	30,67	0,0383	59,35	52,11	

II Chemische Analyse Kalkbestimmung

nach Scheibler Kohlensaurer Kalk im Feinboden (unter 2mm): In Prozenten 86,124 Nach der ersten Bestimmung 86,192 " " zweiten 86,158 im Mittel Humusbestimmung (nach Knop) Humusgehalt im Feinboden (unter 2mm) . . . 0,611 pCt.2) Phosphorsäurebestimmung (nach Finkner) Phosphorsäuregehalt im Feinboden (unter 2mm) . . 0,249 pCt. Eisenoxyd und Tonerdegehalt Einstündiges Kochen des Bodens mit Salzsäure (1,15 spez. Gewicht) Eisenoxyd im Feinboden (unter 2mm). . . 5,712 pCt. Tonerde " " " . . . 0,612 " 1) Die Lage des Punktes konnte in der Karte nicht angegeben werden. 2) Der Humus besteht aus rotem und schwarzem Humus und zwar:
 Roter Humus 0,079 pCt.

 Schwarzer Humus 0,532 "

Summa 0,611 pCt.

Radaunemergel

(1,5 m Tiefe)

Freienwalde (Blatt Freienwalde) R. Gans

Chemische Analyse

Kalkbestimmung

nach Scheibler

Kohlensaurer Kalk im Feinboden (unter 2mm):	In Prozenten
Nach der ersten Bestimmung	93,875
" " zweiten "	93,701
im Mittel	93,788
- Humusbestimmung	
nach Knop	
Humusgehalt im Feinboden (unter 2mm)	. 0,623 pCt. 1)
Phosphorsäurebestimmung nach Finkner	
Phosphorsäuregehalt im Feinboden (unter 2mm)	0,090 pCt
Eisenoxyd- und Tonerdegehalt	
Einstündiges Kochen des Bodens mit Salzsäure (1,1	5 spez. Gewicht)
Eisenoxyd im Feinboden (unter 2mm)	
	0,185 "
1) Der Humus besteht aus rotem und schwarzem Roter Humus 0,134	
Schwarzer Humus 0,489	,

0,623 pCt.

Summa

Radaunemergel

(0,3-0,4 m Tiefe)

Freienwalde (Blatt Freienwalde)

R. GANS

Chemische Analyse

Kalkbestimmung

nach Scheibler

Kohlensaurer Kalk im Feinboden (unter 2mm):	In Prozenten
Nach der ersten Bestimmung	32,576
" " zweiten "	32,771
im Mittel	32,674
Humusbestimmung	
nach Knop	
Humusgehalt im Feinboden (unter 2^{mm})	1,672 pCt. 1)
Phosphorsäurebestimmung	
nach Finkner	
Phosphorsäuregehalt im Feinboden (unter 2mm)	0,125 pCt.
Eisenoxyd- und Tonerdegehalt	
Einstündiges Kochen des Bodens mit Salzsäure (1	,15 spez. Gewicht)
Eisenoxyd im Feinboden (unter 2mm)	. 1,517 pCt.
Tonerde " "	
	m Humus und zwar: 7 pCt. 5 " 2 pCt.

Radaunemergel

Freienwalde 1) (Blatt Freienwalde)

R. GANS

I Physikalische Untersuchung

370	Tiefe	Aufnal	hmefähigk	eit für Sti	ckstoff	Wasserhaltende Kraft nach zwei Bestimmungen		
Bezeichnung	der Ent-		einboden r 2mm)		Feinerde 0,5mm)	100 ccm 100 g Feinboden (unter 2n halten Wasser		
Schicht	nahme	com	nehmen au	f Stickston	ff g	Volum- prozente ecm	Gewichts- prozente g	
Waldkrume	0-0,5	54,42	0,0680	64,94	0,0811	40,42	25,31	
Ackerkrume	0-0,3	32,39	0,0404	41,85	0,0523	35,84	25,28	

¹⁾ Die Lage des Punktes konnte in der Karte nicht angegeben werden.

a) Nährstoffbestimmung

Bestandteile	Auf lufttrocknen Feinboden berechnet in Prozenten Waldkrume Ackerkrum		
1. Auszug mit konzentrierter kochender Salzsäure bei ein- stündiger Einwirkung			
Tonerde Eisenoxyd Kalkerde Magnesia Kali Natron Kieselsäure Phosphorsäure 2. Einzelbestimmungen.	1,845 2,660 2,124 0,002 0,132 0,036 0,061 0,010 0,068	0,453 1,722 12,670 0,000 0,061 0,086 0,066 0,036 0,156	
Kohlensäure (gewichtsanalytisch)	1,179 1,487 0,116 2,173 2,306 86,301	9,235 2,979 0,195 3,377 2,338 76,626	
Summa *) Der Humus besteht aus rotem und schwarzem Humus u	100,000 nd zwar:	100,000	
Bestandteile	In Pro	ozenten Ackerkrume	
Roter Humus	0,848 0,639	2,079 0,900	
Summa	1.487	2,979	

b) Tonbestimmung

Aufschließung der tonhaltigen Teile mit verdünnter Schwefelsäure (1:5) im Rohr bei 220°C. und sechsstündiger Einwirkung

				Waldk	crume	Acker	krume	
	Bestandte	ile			In Proze	enten des		
	Bestandte	110		Schlämm- produkts	Gesamt- bodens	Schlämm- produkts	Gesamt	
Tonerde*) Eisenoxyd		: : :	: : : :	8,646 7,791	1,383 1,247	3,944 5,223	0,603 0,800	
			Summa	16,437	2,630	9,167	1,403	
*) Entenese	he wasserbaltigem T	on		21,869	3,499	9,976	1,526	

Alluvium — Moormergel über Sand Chaussee Gusow-Platkow, Ost-Platkow (Blatt Trebnitz) R. Gans

I Mechanische und physikalische Untersuchung
Körnung

Tiefe der Ent- nahme dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2- 1 ^{mm}	1),5 ^{mm}	S a n 0,5- 0,2mm	0,2-	0,1— 0,05 ^{mm}	T		Summa			
		Alluvialer Moor-		1,6	3,916	HAR	75,0			2	3,4	100,0			
0-3		mergel (Ackerkrume)			1,0	4,2	27,6	34,6	7,6	6,0	17,4				
	akh	akh	akh	akh	Dead	SKH	1,8			75,4			. 2	2,8	100,0
5		Desgl. (Untergrund)			1,4	4,4	29,2	33,0	7,4	6,4	16,4				
		Desgl.		0,2			93,	2		TEST TO SERVICE STATE OF THE PARTY OF THE PA	6,6	100,0			
10	as	(Tieferer Untergrund)	НS	TO ST	0,1	0,3	8,4	64,8	19,6	3,8	2,8				

a) Gesamtanalyse der tonhaltigen Teile

Phosphorsäure (nach Finkener) 0,702 0,749 Kohlensäure (gewichtsanalytisch)**) 2,511 4,094 Humus (nach Knop) 11,052 8,075 Stickstoff (nach Will-Varrentrapp) 0,750 0,598 Hygroskopisches Wasser bei 105° Cels 7,671 8,313 Glühverlust auschl. Kohlensäure, hygroskop. Wasser, 6,431 5,506 Humus und Stickstoff 5,506 5,506 Summa 99,551 100,076 *) Zum größten Teil in Form von Feldspath darin enthalten 19,428 17,503	Bestandteile	Feinboder	trocknen berechnet berechnet bereiten Flacherer Untergrund
a) mit kohlensaurem Natronkali Kieselsäure	1 Aufschließung		
Kieselsäure 46,253 47,089 Tonerde*) 7,681 6,920 Eisenoxyd 6,112 6,485 Kalkerde 5,903 7,978 Møgnesia 1,743 1,727 b) mit Flußsäure 1,788 1,648 Kali 0,951 0,894 2. Einzelbestimmungen 0,951 0,894 2. Einzelbestimmungen 0,702 0,749 Kohlensäure (nach Finkener) 0,702 0,749 Kohlensäure (gewichtsanalytisch)**) 2,511 4,094 Humus (nach Knop) 11,052 8,075 Stickstoff (nach Will-Varrentrapp) 0,750 0,598 Hygroskopisches Wasser bei 105° Cels. 7,671 8,313 Glühverlust auschl. Kohlensäure, hygroskop. Wasser, 6,431 5,506 Summa 99,551 100,076 *) Zum größten Teil in Form von Feldspath darin enthalten 19,428 17,503			
Tonerde*)		46 952	47 089
Eisenoxyd 6,112 6,485 Kalkerde 5,903 7,978 Magnesia 1,748 1,727 b) mit Flußsäure 1,788 1,648 Kali 0,951 0,894 2. Einzelbestimmungen 0,951 0,894 Schwefelsäure n. best. n. best. Phosphorsäure (nach Finkener) 0,702 0,749 Kohlensäure (gewichtsanalytisch)**) 2,511 4,094 Humus (nach Knop) 11,052 8,075 Stickstoff (nach Will-Varrentrapp) 0,750 0,598 Hygroskopisches Wasser bei 105° Cels. 7,671 8,313 Glühverlust auschl. Kohlensäure, hygroskop. Wasser, 6,431 5,506 Summa 99,551 100,076 *) Zum größten Teil in Form von Feldspath darin enthalten 19,428 17,503			
Kalkerde Magnesia 5,903 1,748 7,978 Magnesia 1,743 1,727 b) mit Flußsäure Kali	Eigenovyd		
Magnesia 1,748 1,727 b) mit Flußsäure 1,788 1,648 Kali 0,951 0,894 2. Einzelbestimmungen 0,951 0,894 Schwefelsäure n. best. n. best. Phosphorsäure (nach Finkener) 0,702 0,749 Kohlensäure (gewichtsanalytisch)**) 2,511 4,094 Humus (nach Knop) 11,052 8,075 Stickstoff (nach Will-Varrentrapp) 0,750 0,598 Hygroskopisches Wasser bei 105° Cels. 7,671 8,313 Glühverlust auschl. Kohlensäure, hygroskop. Wasser, 6,431 5,506 Summa 99,551 100,076 *) Zum größten Teil in Form von Feldspath darin enthalten 19,428 17,503	Kalkarda		
b) mit Flußsäure			
Kali 1,788 1,648 Natron 0,951 0,894 2. Einzelbestimmungen 0,951 0,894 Schwefelsäure n. best. n. best. Phosphorsäure (nach Finkener) 0,702 0,749 Kohlensäure (gewichtsanalytisch)**) 2,511 4,094 Humus (nach Knop) 11,052 8,075 Stickstoff (nach Will-Varrentrapp) 0,750 0,598 Hygroskopisches Wasser bei 105° Cels. 7,671 8,313 Glühverlust auschl. Kohlensäure, hygroskop. Wasser, 6,431 5,506 Summa 99,551 100,076 *) Zum größten Teil in Form von Feldspath darin enthalten 19,428 17,503		45. 40	4,1.4.
Natron		1 700	1 040
2. Einzelbestimmungen n. best. n. best. Schwefelsäure n. best. n. best. Phosphorsäure (nach Finkener) 0,702 0,749 Kohlensäure (gewichtsanalytisch)**) 2,511 4,094 Humus (nach Knop) 11,052 8,075 Stickstoff (nach Will-Varrentrapp) 0,750 0,598 Hygroskopisches Wasser bei 105° Cels. 7,671 8,313 Glühverlust auschl. Kohlensäure, hygroskop. Wasser, 6,431 5,506 Summa 99,551 100,076 *) Zum größten Teil in Form von Feldspath darin enthalten 19,428 17,503			
Schwefelsäure n. best. n. best. Phosphorsäure (nach Finkener) 0,702 0,749 Kohlensäure (gewichtsanalytisch)**) 2,511 4,094 Humus (nach Knop) 11,052 8,075 Stickstoff (nach Will-Varrentrapp) 0,750 0,598 Hygroskopisches Wasser bei 105° Cels. 7,671 8,313 Glühverlust auschl. Kohlensäure, hygroskop. Wasser, 6,431 5,506 Summa 99,551 100,076 *) Zum größten Teil in Form von Feldspath darin enthalten 19,428 17,503	Natron	0,301	0,004
Phosphorsäure (nach Finkener) 0,702 0,749 Kohlensäure (gewichtsanalytisch)**) 2,511 4,094 Humus (nach Knop) 11,052 8,075 Stickstoff (nach Will-Varrentrapp) 0,750 0,598 Hygroskopisches Wasser bei 105° Cels 7,671 8,313 Glühverlust auschl. Kohlensäure, hygroskop. Wasser, 6,431 5,506 Humus und Stickstoff 5,506 5 Summa 99,551 100,076 *) Zum größten Teil in Form von Feldspath darin enthalten 19,428 17,503	2. Einzelbestimmungen		
Kohlensäure (gewichtsanalytisch)**) 2,511 4,094 Humus (nach Knop) 11,052 8,075 Stickstoff (nach Will-Varrentrapp) 0,750 0,598 Hygroskopisches Wasser bei 105° Čels 7,671 8,313 Glühverlust auschl. Kohlensäure, hygroskop. Wasser, 6,431 5,506 Summa 99,551 100,076 *) Zum größten Teil in Form von Feldspath darin enthalten 19,428 17,503	Schwefelsäure	n. best.	n. best.
Kohlensäure (gewichtsanalytisch)**) 2,511 4,094 Humus (nach Knop) 11,052 8,075 Stickstoff (nach Will-Varrentrapp) 0,750 0,598 Hygroskopisches Wasser bei 105° Čels 7,671 8,313 Glühverlust auschl. Kohlensäure, hygroskop. Wasser, 6,431 5,506 Summa 99,551 100,076 *) Zum größten Teil in Form von Feldspath darin enthalten 19,428 17,503	Phosphorsäure (nach Finkener)	0,702	0,749
Humus (nach Knop)		2,511	4,094
Stickstoff (nach Will-Varrentrapp) 0,750 0,598 Hygroskopisches Wasser bei 105° Cels 7,671 8,313 Glühverlust auschl. Kohlensäure, hygroskop. Wasser, Humus und Stickstoff 6,431 5,506 Summa 99,551 100,076 *) Zum größten Teil in Form von Feldspath darin enthalten 19,428 17,503		11,052	8,075
Glühverlust auschl. Kohlensäure, hygroskop. Wasser, Humus und Stickstoff 6,431 5,506 Summa 99,551 100,076 *) Zum größten Teil in Form von Feldspath darin enthalten 19,428 17,503		0,750	0,598
Glühverlust auschl. Kohlensäure, hygroskop. Wasser, Humus und Stickstoff 6,431 5,506 Summa 99,551 100,076 *) Zum größten Teil in Form von Feldspath darin enthalten 19,428 17,503	Hygroskopisches Wasser bei 1050 Cels	7,671	8,313
Humus und Stickstoff	Glühverlust auschl. Kohlensäure, hygroskop. Wasser,		
*) Zum größten Teil in Form von Feldspath darin enthalten . 19,428 17,503		6,431	5,506
	Summa	99,551	100,076
	*) Zum gwäßten Teil in Form von Feldenath denin enthalten	19.428	17.503
55) Yum consistion Toil in Form you kelleng Kalle davin onthalton D. (UI H. DUD)	**) Zum größten Teil in Form von kohlens. Kalk darin enthalten	5,707	9,305

b) Kalkbestimmung (nach Scheibler)

Kohlen	Kohlensaurer Kalk im Feinboden (unter 2mm):									Oberkrume Flacher Untergru in Prozenten		
Nach	der	ersten Be	stimmung	۲.							1,66	2,73
,,	11	zweiten.	"								1,66 1,66	2,73 2,69
							im	M	itt	el	1,66	2,71

Mit dem Scheibler'schen Apparate ist kein kohlensaurer Kalk im tieferen Untergrunde nachweisbar

- c) Humusbestimmung des Tieferen Untergrundes (nach Knop) Humusgehalt im Feinboden (unter 2mm) 0,275 pCt.
- d) Stickstoffbestimmung des Tieferen Untergrundes (nach Will-Varrentrapp) Stickstoffgehalt im Feinboden (unter 2mm) 0,019 pCt.

Alluvium — Moormergel über Sand Nördlich von Neu-Hardenberg (Blatt Trebnitz) R. Gans

I Mechanische Untersuchung

Körnung

Tiefe der Ent- nahme dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	2— 1 ^{mm}	1- 0,5mm	S a n 0,5— 0,2 ^{mm}	0,2—		T	ealtige eile Feinstes unter 0,01 ^{mm}	Summa
0.0		Alluvialer Moor-		0,7			66,4			3	2,8	99,9
0-3		mergel (Ackerkrume)	and the second	-	0,6	1,4	21,0	31,0	12,4	11,6	21,2	
	b h		КН	0,2			60,4			. 3	9,4	100,0
5	a kh	Desgl. (Untergrund)			0,2	1,0	12,4	34,6	12,2	14,2	25,2	
	100	Desgl.		0,0			93,8	3			6,2	100,0
10	100	(Tiefster Untergrund)	KS	ale:	0,0	0,2	16,0	64,0	13,6	3,4	2,8	

a) Nährstoffbestimmung

Bestandteile	Auf lufttrocknen Feinboden berechne in Prozenten		
	Acker- krume	Unter- grund	
1. Auszug mit konzentrierter kochender Salzsäure			
bei einstündiger Einwirkung	1000		
Tonerde	0,725	0,801	
Eisenoxyd	1,139	1,404	
Kalkerde	11,010	14,340	
Magnesia	0,353	0,470	
Kali	0,147	0,125	
Natron	0,266	0,182	
Kieselsäure	0,067	0,060	
Schwefelsäure	0,027	0,026	
Phosphorsäure	0,216	0,270	
2. Einzelbestimmungen			
Kohlensäure (gewichtsanalytisch)*)	7,927	10,156	
Humus (nach Knop)	3,043	2,523	
Stickstoff (nach Kjeldahl)	0,204	0,179	
Hygroskopisches Wasser bei 105° Cels	1,886	1,964	
Glühverlust ausschl. Kohlensäure, hygroskop. Wasser,	The state of the s		
Humus und Stickstoff	1,675	1,298	
In Salzsäure Unlösliches (Ton, Sand und Nicht-			
bestimmtes)	71,815	66,202	
Summa	100,000	100,000	
*) Entspräche kohlensaurem Kalk	18,016	23,082	

b) Kalkbestimmung des Tieferen Untergrundes nach Scheibler

J. 23-14	the same	The same of	A STATE OF THE STA	-20-5	100			600	1	
Nach	der	ersten	Bestimmung							1,80
,,,	,19	zweiten	,							1,82

Humusboden des Moormergels Östlich von Kunersdorf (Blatt Neu-Trebbin) R. Gans

I Mechanische und physikalische Untersuchung

a) Körnung

Tiefe der Ent- nahme (Mäch- tigkeit) dm	Geognost. Bezeichnung	Bodenart	Agronom. Bezeichnung	Kies (Grand) über 2mm	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Summa	
1 (0-2)	Section 1	No.		0,5	79,8	80,3	
3		Kalkiger sandiger Humus	sandiger	кѕн	0,1	94,4	94,5
6	a kh				0,1	90,8	90,9
•••		Sandiger	6.	0,0	75,3 24,7	100,0	
10		Lehm	SL		0,1 1,6 13,2 39,9 20,5 13,1 11,6		

	Tiefe	Aufna	hmefähigk	eit für St	ickstoff	100000000000000000000000000000000000000	haltende raft
Bezeichnung der Schicht	der Ent- nahme	(unter	einboden 2mm) nehmen au	(unter	Feinerde 0,5mm) ff	100 ccm Feinboden	estimmungen 100 g (unter2mm) Wasser Gewichts- prozente g
Kalkiger sandiger Humus Kalkiger sandiger	1	77,4	0,0972	78,8	0,0990	51,6	42,3
Humus Sandiger Lehm	6 10	58,8 42,8	0,0738 0,0538	60,2 43,6	0,0756 0,0547	35,5 30,5	26,6 19,5

a) Nährstoffbestimmung

Bestandteile	aus 1 dm	sandiger mus aus 6 dm n Prozente	Lehm aus 10 di
Auszug mit konzentrierter kochender Salzsäure bei einstündiger Einwirkung			
Tonerde	0,889	1,102	1,300
Eisenoxyd	3,024	1,210	1,674
Kalkerde	4,159	7,770	0,300
Magnesia	0,528	0,396	0,443
Kali	0,094	0,067	0,204
Natron	0,103	0,090	0,092
Kieselsäure	0,106	0,090	0,082
Schwefelsäure	0,173	0,097	0.014
Phosphorsäure	0,245	0,126	0,043
2. Einzelbestimmungen			
Kohlensäure*) (gewichtsanalytisch)	2,000	5,068	0,071
Humus (nach Knop)	9,255	3,835	0,146
Stickstoff (nach Will-Varrentrapp)	0,699	0,247	0,006
Hygroskopisches Wasser bei 1050 Cels	4,369	2,126	0,938
Glühverlust ausschl. Kohlensäure, hygroskop. Wasser,		The state of the s	0.000
Humus und Stickstoff	6,290	2,514	1,046
In Salzsäure Unlösliches (Ton, Sand und Nicht-		1	
bestimmtes)	68,066	75,262	93,641
Summa	100,000	100,000	100,000
*) Entspräche 4,55 pCt. kohlensaurem Kalk	100,000	200,000	100,000

b) Einzelbestimmungen

Bestandteile	Kalkig sandiger Humus aus 3 dm in Prozenten
Kohlensaurer Kalk (nach Scheibler) nach der ersten Bestimmung 14,57 nach der ersten Bestimmung 14,57 zweiten " 14,57 } im Mittel	. 14,57
Humus (nach Knop)	. 2,42 0,14

c) Tonbestimmung

Aufschließung der bei 110° C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung.

Bestandteile	Kalkig sandiger Humus aus 6 dm in Prozenten des Gesamtbodens
Tonerde*)	1,837 1,577
*) Entspräche wasserhaltigem Ton	3,414 4,647
Lieferung 81	F

Schlick-Analysen aus dem Oderbruche zusammengestellt von Th. Wölfer Niederungsboden — Oberkrumen¹) des Tonbodens des Schlickes (ast)

		Humusgehalt Knop im Fein unter 2mm in	3,83	21,87	3,10	10,08	7,81	4,17	2 84	3,57	3,27
Analyse	oxyd	desamt-snebod	4,67	6,05	5,13	5,49	6,72	6,39	6,03	6,65	6,07
ische /	Eisenoxyd in Prozenten	Schlämm- produkts	4,75	6,21	5,48	5,91	7,23	96'9	6,58	7,38	6,73
II Chemische Analyse	Tonerde berechnet auf wasserhalt.	Gesamt- des produkts m. des	13,38 18,12 83,72 83,18	11,58 11,29 29,28 28,55	12,67	14,52 13,50 36,72 34,15	14,71 13,68 37,21 34,60	13,07	51,1 12,57 11,51 39,6 31,79 29,12	13,47 12,15 84,07 30,78	12,84 11,58 6,73 82,48 29,29
1	Tonerde berechnet a wasserhal	Schlämm- zen; produkts nie n produkts nie n Gesamt- des o Gesamt- des o	13,33 13,12 83,72 83,18	11,58 29,28	18,58 12,67 84,28 82,04	14,52	14,71 87,21	14,23 13,07 36,00 33,05	12,57 81,79	13,47 84,07	12,84 32,48
gun	c) Wasser- haltende Kraft	100 ccm oder 100g nehm. auf (I) Volum-, (II) Gew proz. in	1	1	1	1 64,1 II 49,9	I 54,8 П 41,3	1	-=	1	1
I Mechanische und physikalische Untersuchung	keit	Feinerde (unter 0,05 mm) en auf cem g	98,4 138,8 0,1744 138,8 0,1744	0,1706	93,6 130,7 0,1642 130,7 0,1642	93,0 144,8 0,1812 144,8 0,1819	0,1934	91,8 128,2 0,1610 129,8 0,1630	0,1461	0,1640	90,2 121,7 0,1528 121,9 0,1531
sche U	nach	g Fei (unter n auf cem	138,8	135,8	130,7	144,8	154,0	129,8	116,8	130,6	121,9
physikali	b) Aufnahmefähigkeit für Stickstoff nach Knop	Feinboden Fe unter 2 mm) (unter nehmen auf cem g cem Stickstoff	0,1744	97,5 135,7 0,1704 135,8	0,1642	0,1812	93,0 153,0 0,1922 154,0	0,1610	91,6 115,1 0,1446 116,8	90,2 130,4 0,1638 130,6	0,1528
pun e	für E	Feinl (unter	138,8	135,7	130,7	144,8	153,0	128,2	115,1	130,4	121,7
anisch	8	Ton- halt. Teile (unter 0,05 mm)	98,4	97,5	93,6	93,0	93,0	8,16	91,6	90,2	90,2
6	III	P 103	9	10	4	0	0	8,2	8,4	8,6	8,6
I Me	Köri	Sand (2-0,05 mm)	1,6	2,5	6,4	0,7	7,0	00	00	6	6
I Me	a) Körnung	Kies San Grand (2- 2 0,0 mm) mn	0,0	0,0	0,0	0,0 7,	0,0 7,	0,0	0,0	6 0,0	0,0
I Me	Sun	-	_			1000		100			
I We	Sun	Hezelchn (über (üb	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

10 Nordwestlich von Neu-Küstrinchen (Bl. Freienwalde)			1 0,0	2,8	87,2	115,8	0,1454	9,911	0,0 12,8 87,2 115,8 0,1454116,6 0,1464 I 55,6 13,30 11,60 4,90 4,27 II 43,1 83,65 29,34	1 55 11 43	,6 13,3 1, 33 ,6	6 29,3	4,90	4,27	8,76
en	ALC: UNKNOWN		0,0	2,44	99'99	104,8	0,1810	106,4	55,8 104,8 0,1810 106,4 0,1887	H	45,6 30,9 33 ,8	13,39 7,47 33,86 18,89	6,04	3,37	2,96
	12 1,5 km nördlich der Reiherbusbrücke westl. Hett des Weges von Falkenberg nach Brahlitz (Bl. Hohen-Finow)		0,0	54,0	46,0	75,6	75,6 0,0950		76,5 0,0961	1	28.9	11,46 5,27 28,98 13,33	6,13	2,82	1,90
n	dem Ostrande des HeT		0,0 60,2	0,2	868	81,2	81,2 0,1020		83,9 0,1054	1 38,7 11 26,7	7, 13,8	13,83 5,51 (34,99 13,98	6,74	2,68	2,48
Vor	Herrnhof und Vorwerk HST		9 0,0	60,5	868	71,5	39,8 71,5 0,0898		72,1 0,0906	I 37,8 II 26,1	,8 11,3 1 28,6	9 11,45	11,34 4,52 7,91 28,69 11,42	3,15	2,18
erd	15 Nordwestlich der Zollbrücke am Oderdeiche HTS (Bl. Neu-Lewin)		0,1	2,8	2,8 9,97,1		83,9 0,1054		86,3 0,1084	1 44,5 II 31,7		1	1	1	2,35
	Ŧ		0,2	4,8	95,0	105,6	0,1326	110,9	4,8 395,0 105,6 0,1326 110,9 0,1393	I 49,8 II 37.8	00,00	1	1	1	3,34
	Ŧ		6,0	5,6 3	94,1	101,6	0,1276	9,201	5,6 3,94,1 101,6 0,1276 107,6 0,1352	I 51,7 II 40,9	7.6	1	1	1	3,72
	注		0,5	5,6	6,860	108,1	0,1358	114,6	5,6 993,9 108,1 0,1358 114,6 0,1439	I 51,6 II 40,3	9,00	1	1	1	2,46
	Ŧ	T 6)3,0		5,2 ,	8,160	127,4	0,1600	184,6	5,2 3)91,8 127,4 0,1600 134,6 0,1691	I 55,5 II 44,7	102	1	1	1	4,42
),E		0,5	8,8	2,080 8,8		67,4 0,0846	73,9	0,0928	1 38,7 II 25,4	1	1	1	1	1,80
	王		0,5 1	0,2 ,	9,680	103,8	0,1304	115,6	10,2 989,6 103,8 0,1304 115,6 0,1452	I 52,8 II 40,7	100	!	1	1	9,35
	보		6'96	6,0	1,180	106,8	0,1342	114,2	6,0 987,1 106,8 0,1342 114,2 0,1434	I 52,7 II 42,9	1 6	1	1	1	3,92
so ,	23 Südöstlich des Dorfes Neu-Rüdnitz, östlich H des Bahnhofs (Bl. Neu-Lewin)	HT 91	911,9	4,6	83,5	117,8	0,1480	124,8	4,6 983,5 117,8 0,1480 124,3 0,1561	1 57,0 II 46,7	0,5	1	1	1	7,24

9) Tiefe der Entnahme 0—1 dm. — ⁹) Durch stärkeren Druck hervorgehohen. — ⁹) Die Aschenbestimmung ergab 57,9 pCt. Asche. — ⁹) Bei den Nummern 15-23 rechnet die Korngröße des Sandes von 2-0,5 mm. Ferner bezieht sich bei diesen Nummern das unter Tonhaltige Teile mitgeteilte Ergebnis auf Feinerde mit einer Korngröße von unter 0,5 mm. — ⁹) Durch lockernde und düngende Stoffe verunreinigt.

B Einzelbestimmungen diluvialer Gebirgsarten

Unterdiluvialer Mergelsand

 $\begin{array}{c} \text{Hohlweg am Dorfe Niederg\"{o}rlsdorf, Weg nach Gusow (Blatt Trebnitz)} \\ \text{R } \text{G}_{\text{ANS}} \end{array}$

I Mechanische Untersuchung

nost.		nom.	Kies (Grand)	Sand	Tonhaltige Teile	ıma
Geognost. Bezeichnung	Bodenart	Agronom Bezeichnu	über 2mm	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Staub Feinstes 0,05— 0,01 ^{mm} 0,01 ^{mm}	Summa
4-0	Unter- diluvialer	KŤ⊗	0,0	22,4	77,6	100,0
dms	Mergelsand	KIS		0,0 0,0 0,1 0,1 22,2	65,8 11,8	

II Chemische Analyse

Kalkbestimmung im Feinboden (unter 2mm) (nach Scheibler)

Kohlensaurer Kalk { nach der ersten Bestimmung 14,60 pCt. } im Mittel 14,68 pCt.

Unterdiluvialer Tonmergel

Tongrube nördlich von Worin am Pflaumenberge (Blatt Trebnitz) R. Gans

I Mechanische Untersuchung

nost.		gronom.	Kies (Grand)			San	d		Т	haltige eile Feinstes	Summa
Geognost. Bezeichnung	Bodenart	Agrono Bezeichn	über 2mm	2— 1 ^{mm}	0,1 - 0,5mm	0,5 0,2mm	0,2— 0,1mm	0,1— 0,05 ^{mm}			Sun
	Unterdiluvialer	wa.	0,1			9,8			9	0,0	99,9
dh	Tonmergel	KST		0,4	0,8	1,6	2.2	4.8	16,2	73,8	

II Chemische Analyse

a) Tonbestimmung

Aufschließung der bei 110° C. getrockneten tonhaltigen Teile des Feinbodens mit verdünnter Schwefelsäure (1:5) im Rohr bei 220° C. und sechsstündiger Einwirkung

			In Prozen	
Bestan	dteile		Schlämmprodukts	Gesamtbodens
			9,891 5,464	8,902 4,918
		Summa	15,355 25,019	13,820 22,517

b) Kalkbestimmung im Feinboden (unter 2mm) (nach Scheibler)

Kohlensaurer Kalk { nach der ersten Bestimmung 18,31 pCt. } im Mittel 18,38 pCt.

Chemische Analyse

Kalkbestimmungen (nach Scheibler)

Tiefe der Ent- nahme dm	Fundort (Name des Blattes)	Geognostische Bezeichnung	Kalkgehalt in Prozenten nachd.1.Bestimmung " "2. "	Im Mittel	Analytiker
30	Hohlweg am Dorfe Niedergörlsdorf, Weg nach Gusow (Blatt Trebnitz)		10,81 10,38	10,35	
15	Nordöstlich von Wulkow, an der Chaussee (Blatt Trebnitz)	Unterer Diluvial- (Geschiebe-) Mergel dm	10,52 10,67	10,60	
-	Mergelgrube am Marx- dorfer Wege, dicht beim Dorfe Obergörlsdorf (Blatt Trebnitz)		8,48 8,48	8,48	R. GANS
	Schäferei in Worin (Blatt Trebnitz)	Unterer Diluvialer Mergelsand dms	14,80 14,94	14,87	
30	Mergelgrube südlich von Trebnitz, östlich der Chaussee nach Jahnsfelde (Blatt Trebnitz)	Oberer Diluvial- (Geschiebe-) Mergel ∂m	9,87 9,51	9,44	

Chemische Analyse Kalkbestimmungen (nach Scheibler)

Tiefe der Ent- nahme dm	Fundort (Name des Blattes)	Geognostische Bezeichnung	Kalkgehalt in Prozenten nach d.1.Bestimmung	Im Mittel	Analytiker
	Südabhang des Judendiktenberges (Blatt Müncheberg)	Unterer Diluvial-	14,05 14,05	14,05	R. Gans
10	Am Nordufer des Schermützelsees, Anfang des Poëtensteiges (Blatt Müncheberg)	(Geschiebe-) Mergel dm	8,80 8,60	8,70	F. WAHN- SCHAFFE
30	Grube östlich der Stadt Strausberg (Blatt Strausberg)		18,98 19,00	18,99	
20	Grube nahe der Jagd- bude (Blatt Strausberg)	STATES OF THE PARTY OF THE PART	16,22 16,21	16,22	
	Grube südwestlich von Hohenstein (Blatt Strausberg)	AND THE REAL PROPERTY.	14,58 14,54	14,56	
10	Grube nordwestlich von Hohenstein (Blatt Strausberg)		13,80 13,71	13,76	
-	Grube östlich von Bollers- dorf, nördlich von der Bollersdorfer Höhe (Blatt Müncheberg)	Oberer Diluvial-	12,56 12,65	12,61	R. Gans
10	Wegeeinschnitt nord- westlich von Dahmsdorf (Blatt Müncheberg)	(Geschiebe-) Mergel	10,85 10,93	10,89	
20	Aufschluß im Hohlwege südlich von Pritzhagen (Blatt Müncheberg)	∂m	10,74 10,74	10,74	
60	Grube der Schneide- mühle Dahmsdorf (Blatt Müncheberg)	100000000000000000000000000000000000000	9,40 9,49	9,45	
15	Grube am Wege Müncheberg-Obersdorf (Blatt Müncheberg)		7,84 7,81	7,88	F. WAHN- SCHAFFE
-	Nordwestlich von Friedrichslust am nörd- lichen Gehänge des Up- stallfließes (Blatt Möglin)		7,43 7,43	7,48	R. Gans

C. Felster'sche Buchdruckerei, Berlin.

Inhalts-Verzeichnis

										18								Seite
I	Oberflächenformen une	d	ge	olog	gis	ch	er	Bau	11	des	W	eite	ere	n 6	iek	piet	es	3
H	Die geologischen Verh	ıäl	tni	isse	d	es	Bl	atte	98									5
	Das Diluvium .																	, 5
	Das Alluvium.																	8
Ш	Bodenbeschaffenheit										*							12
	Der Tonboden						7.											12
	Der Lehmboden																	12
	Der Sandboden																	13
	Der Humusboden																	14
IV	Chemische und mech	an	isc	he	B	ode	enu	inte	ers	uch	nur	ige	n	(m	it	be	son	derer
	Seitenzählung)																	
	Allgemeines																	
	Verzeichnis der	An	al	yse	n													
	Bodenanalysen																	